Exercise — ANTLRv4

Patryk Kiepas
March 25, 2017

Our task is to learn ANTLR — a parser generator. This tool generates
parser and lexer for any language described using a contert-free grammar.
With this parser we can perform further analysis of the texts written in the
language. Help: https://github.com/antlr /antlr4 /blob/master/doc/index.md

1 Installation
With IntelliJ IDEA
1. Install IntelliJ IDEA Community Edition — https://www.jetbrains.com/idea/
2. Open IntelliJ IDEA Community Edition
3. Click File — Settings... (Ctrl + Alt + S)
4. In the Settings window select Plugins and click Install JetBrains plugin...

5. Find and install plugin ANTLR v4 grammar plugin

Without IntelliJ IDEA

1. Download ANTLR v4.6 java binary — http://www.antlr.org/download/antlr-4.6-
complete.jar

2. Put the JAR in any directory

https://github.com/antlr/antlr4/blob/master/doc/index.md
https://www.jetbrains.com/idea/
http://www.antlr.org/download/antlr-4.6-complete.jar
http://www.antlr.org/download/antlr-4.6-complete.jar

2 First project

We will start with grammar Hello. Create Hello.g4 file and copy the text below to the

file:

// Define a grammar called Hello

grammar Hello;

r

ID :
WS :

’hello’ ID ; // match keyword hello followed by an identifier
[a-z]+ ; // match lower-case identifiers
[\t\r\nl+ -> skip ; // skip spaces, tabs, newlines

This grammar allows to parse any string consists of word hello followed by a space, and
any valid identificator. This identificator is defined as token ID with regular expression
[a-z]+. This means: match any characters from a to z one or more times.

The grammar’s name and the name of g4 file must be the same.
The grammar must contain at least one parser rule.

With IntelliJ IDEA

1.
2.

- W

Click File — New — Project...
Then create an Empty Project
Include Hello.g4 grammar in the project

Open tab with the plugin ANTLR v4 grammar plugin

5. In the tab write down the test code (e.g. hello aaaaaaaa)

. Select initial rule 7 from Structure sidebar (on the left)

Test the grammar (look over AST)

Without IntelliJ IDEA

1.
2.

Open terminal and go to the directory with the JAR

Put Hello.g4 in that directory

. Type java -cp "antlr-4.6-complete.jar;." org.antlr.v4.Tool Hello.g4 (this

generate parser/lexer)

. Compile parser/lexer files with javac Hello*.java
. Prepare file with code to test TEST_FILE.txt (e.g. hello aaaaaaaa)

. Test the grammar java -cp "antlr-4.6-complete.jar;."

org.antlr.v4.gui.TestRig Hello r -gui TEST_FILE.txt — where Hello is the
name of the grammar, and 7 is the rule to test (look over AST)

3 Arithmetic

Let’s say our language is an arithmetic expression. This language consists of numbers
mixed with arithmetic operators (e.g. +, -, /, *) and a pair of paranthesis (()). Example
expressions from this language are: 3*x2+(103-3), 3*3%3*3 or (((3-3))). We start by
fiding all the tokens — a basic blocks of our language. Then we prepare parser rules that
describe how these tokens are connected.

Tokens

Token name starts with capital letter. By convention all token name is written in CAPS
LOCK. Token is defined using regular grammar (well known reqular expression). In our
language there are numbers, let’s say integers: NUMBER : [0-9]+. This means: any
sequence of one or more digits.

Apart from named tokens we can have in-lined tokens that are used directly in the
parser rules (as we see later). So instead of defining tokens for each operator (e.g.
MUL : ’x’) we will just use >*’. Apostrophes means that whatever is in between of
them, is a part of the described language.

Parser rules

Having initial token we can move to parser rules. We have one rule which is expression
expr. Expression can be a number, or an addition of numbers, multiplicaiton of numbers,

. and so on. Also an expression can be nested in parentheses. All of this can be written
down using one parser rule with many alternatives (subrules):

expr : ’(° expr ’)’
| expr ("*’|’/’) expr
| expr (’+’|°-’) expr
| NUMBER

b

When parsing an expression, the rule expr is match from top to the bottom. So the
order in which rule’s alternatives are written matters. If a subrule A is before subrule
B then A will be match if it is correct, even though subrule B might be correct. This
behaviour is also correct for tokens.

Usually we define subrules/tokens starting from the more specific one
to the least specific.

Using this subrule hierarchy we can mimic operators precedence. For our rule expr
multiplication and division have the same priority ((’*’|°/?)) but also a higher priority
than addition and substraction ((’+’]’-7))

Full example

Now we can test our grammar. We added an additional token WS (whitespaces) which
matches all white characters (newline, tabulator, space). This token has an annotaion
-> skip which means to skip all of these whitespaces and don’t use them when matching
parser rules. This makes our rules easy, because otherwise it would be necessary to put
the tokens for each of these whitespaces whenever they could appear.

grammar ArithmeticExpression;

NUMBER : [0-9]+;
WS : [\r\n\t] -> skip;

expr : ’(’ expr ’)’
| expr (’*°|’/’) expr
| expr (°+’|’-’) expr
| NUMBER

We can test this grammar with an example given before 3*2+(103-3). The output
AST (abstract-syntax tree) for this expression is as follow:

Figure 1: An AST for 3 %2+ (103 — 3)

4 C++ function

Now we try to parse a simple C++ function. Let’s look at our language example:

// function example
#include <iostream>
using namespace std;

int addition (double a, float b)

{
int r;
r=a+b;
return r;
}

Our example consists of a few language constructs that are good candidates for parser
rules:

e Include directive — #include <iostream>

e Namespace directive — using namespace std
e Function definition — int addition(double
e Argument definition — double a

e Variable definition — int r

e Assignment statement — r = a+b

e Expression — a+b

e Return statement — return r

Here are a few proposal for our tokens

e Identificator — iostream, std, addition, a, r etc.

e Type — float, int, double

Keywords — using, namespace, return

e Comment — // function example

Operators — +

Special characters — <, >, ;

Tokens

We start with tokens. We define TYPE with three subrules for each data type name.
ID is a classic sequence of lower and upper latin characters. COMMENT token matches
comments and skip them. We know that comments start with // characters. After this
characters everything belong to the comment. Term .*?7 means match every character
but do it in a non-greedy matter (we don’t want to match the rest of the program with
this token). Comment ends with a new line.

TYPE : ’int’ | ’double’ | ’float’;
ID : [a-zA-Z]+;

COMMENT : °//’ .%x7 ’\n’ -> skip;
WS : [\r\n\t] -> skip;

Parser rules

We define program rule as our main rule. Each program consists of an include directive,
a namespace directive and a function definitions. The include directive is a #include
token with name of the library... and so on.

program : include* namespace* function_def+;

include : ’#include’ ’<’ ID ’>’;
namespace : ’using’ ’namespace’ ID ’;’;

arg : TYPE ID;
function_def : TYPE ID ’(° arg (°,’ arg)* ’)’ ’{’ statements ’}’;

statements : (stmt ’;’)+;
stmt : TYPE ID

| ID ’=’ expr

| ’return’ ID

expr : expr ’+’ expr
| ID

include namespace function_def
#include = iostream = wusing namespace std ; it addtion (arg |, arg)] 1 statements }
double a float b stmbt1 ; stmt:2 ; strt3
it r r = expr:l return r

expr:l + expri

|
b

0 —

Figure 2: An AST for our C++ program

5 Project

Go to course webpage and open PDF with a project description.

	Installation
	First project
	Arithmetic
	C++ function
	Project

