
Introduction to theory of languages

Patryk Kiepas

MINES ParisTech & AGH

March 11, 2017

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 1 / 45

Course information

Plan
1 Saturday, 25th of February 2017 – lecture (introduction to grammars)

2 Saturday, 4th of March 2017 – lecture (grammars and ANTLR)

3 Saturday, 11th of March 2017 – exercises (grammars)

4 Saturday, 25th of March 2017 – exercises (ANTLR)

5 Exam

Any questions?

Ask by mail: kiepas@agh.edu.pl

Course web-page

http://home.agh.edu.pl/~kiepas → Teaching → Introduction to
theory of languages (2017)

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 2 / 45

Outline

1 Course information

2 Theory
Languages
Grammars
Hierarchy of grammars
Examples of grammars

3 Practice
Notations of grammar
ANTLR
ANTLR examples

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 3 / 45

Introduction

Linguistics

Scientific study of languages. Involves analysis of language:

form – language evolution and task

context – environment of language usage

semantics – the meaning of the language

Some important aspects

Phonetics

Articulation

Perception

Acoustic features

Morphology

Syntax

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 4 / 45

Language types

1 Natural languages

Ordinary – evolves naturally in humans without planning
Controlled – a restricted subset of natural language in order reduce or
eliminate ambiguity and complexity

2 Artificial languages
Constructed (planned a priori or a posteriori)

Engineered languages – experiments in logic, philosophy, linguistics
Auxiliary languages – international communication (e.g. Esperanto,
Ido, Interlingua)
Artistic languages – aesthetic pleasure or humorous effect (e.g.
Klingon)

Formal

Computer programming languages (e.g. Java, Haskell, C, C++, Ruby)
Files and formats descriptions (e.g. YAML, JSON, XML)

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 5 / 45

Description of natural languages

A really small bit of history

In the late 1950’s Noam Chomsky tried to describe natural languages

Important paper: ”Three models for the description of language”,
Noam Chomsky (1956).

In a result of his research two disciplines originated:
1 Theory of formal grammars
2 Generative (transformational) grammars

Figure 1: Professor of Linguistics (Emeritus) at MIT, Cambridge

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 6 / 45

Description of natural languages

What we know now?

Description of natural languages is hard

Description of any natural languages might be impossible

Why this is important?

Better understanding of language creation processes

More insights into functioning of our brain

Natural language processing (NLP)
Translations (e.g. Google Translator)
Synthesis (e.g. speech generation)
Perceiving (e.g. robots, voice-control)

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 7 / 45

Description of formal languages

Result

Description of natural languages help us describe an artificial (formal) ones

Programming languages

Protocol for communication with the computer

Performing operations and computations

Interpretation and execution

Compilation

Static code analysis

Data formats

Structured data

Interchangeable model for communication and data transmission

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 8 / 45

Alphabet

Alphabet

A set Σ of available symbols, the simplest elements in the language

Examples

binary alphabet {0, 1}
decimal numbers {0, 1, 2, 3, ..., 9}
Latin alphabet {a, b, c , d , ..., z}
Cyrillic

Figure 2: Ancient Latin alphabet
Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 9 / 45

Word (I)

Word

Word w is a sequence of N symbols w = x1x2...xN where xi ∈ Σ
(e.g. 010110, ABCDAAE)

Length

Length of the word w is a number of symbols it contains |w | = N
(e.g. |010110| = 6, |ABCDAAE | = 7)

Empty word

Special word ε with length |ε| = 0

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 10 / 45

Word (II)

Words examples

w = 010110 word over alphabet Σ = {0, 1}
w = abc13dj3 word over alphabet Σ = {a, b, ...z , 0, 1, ...9}
w = ACGTCCGGTA word over alphabet Σ = {A,C ,G ,T}

Kleene star (closures)

Σ∗ – set of all words over Σ

Σ+ – set of all nonempty words Σ+ = Σ∗\{ε}

Closures examples

if Σ = {a} then Σ∗ = {ε, a, aa, aaa, aaaa, aaaaa, aaaaaa, ...}
if Σ = {a, b} then Σ+ = {a, b, aa, bb, ab, ba, aaa, bbb, ...}
if Σ = {a, b, ..., z} then Σ+ = {cat, dog , a, aa, aaa, ...}

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 11 / 45

Language

Definition

Formal language L ⊆ Σ∗ is a subset of all words built over an alphabet Σ

Examples

Language L1 of palindromes in English
L1 = {mum, hannah,madam, ...}
Morse code with alphabet Σ = {·,−}, L2 = {·−,− · · ...,−− ··}
Empty language

English language

Language L3 with the set of words with fixed-size of N

Language L4 = {anbn|n ≥ 1}
Language L5 = {abcnde|n ≥ 0}
Language L6 = {am|m = 3n ∧ n ≥ 1}

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 12 / 45

Grammar

Grammar

Description of a language and its syntax

A recipe for composing elements of an alphabet into sentence

Definition

Grammar is a system G = (VT ,VN ,P,S) where:

VT – terminals (alphabet Σ)

VN – nonterminals

VN ∩ VT = ∅
V = VN ∪ VT – vocabulary

P – production rules (P ⊆ V + × V ∗)

VN ,VT ,P – are finite, nonempty sets

S – start symbol, S ∈ VN

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 13 / 45

Grammar and languages

Derivation

Let α, β ∈ V , then we say that:

β derives directly from α (i.e. α
p

=⇒ β) – if there exists production
rule p ∈ P that obtains β from α

αn derives from α1 (i.e. α1
∗

=⇒ αn) – if there exists a sequence of
direct derivations giving in the result αn :

α1
p1

==⇒ α2
p2

==⇒ α3
p3

==⇒ ...
pn

==⇒ αn, where {pi : 0 ≤ i ≤ k ∧ pi ∈ P}

Grammars and languages

Sentence w ∈ V ∗T is generated by grammar G if w derives from S

(S
∗

=⇒ w)

We say grammar G generate language L(G) if it contains all

sentences derived from S , in a result L(G) = {w ∈ V ∗T : ∃(S
∗

=⇒ w)}
Two grammars G1 and G2 have (weak) equivalence if L(G1) = L(G2)

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 14 / 45

Grammar examples

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S}
VT = {a, b}
P = {S → aS , S → b}

Derivations

S =⇒ aS =⇒ aaS =⇒ aaaS =⇒ aaaaS =⇒ aaaaaS =⇒ ...

Language

L(G) = {anb}, where n ≥ 0

Example sentences

b, ab, aab, aaab, aaaab, aaaaab, aaaaaab, aaaaaaab, aaaaaaaab, ...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 15 / 45

Chomsky’s hierarchy

Hierarchy

Describe the grammar expressiveness

Observation: regular language is also a context-free grammar etc.
(Regular ⊆ Context-free ⊆ Context-sensitive ⊆ Unrestricted)

The nested grammar is more restrictive than the enclosing one

Figure 3: Chomsky’s hierarchy

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 16 / 45

Limiting conditions

For all production rules ∀(α→ β) ∈ P it is true:

First condition

|α| ≤ |β| - they don’t decrease length of a word, where α, β ∈ V ∗

Second condition

α ∈ VN is a nonterminal

β ∈ V + is not empty

Third condition

α ∈ VN is a nonterminal

β has a form β = a or β = aB where a ∈ VT ,B ∈ VN

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 17 / 45

Type-0 : Recursively enumerable (unrestricted) grammar

Description

Type-0 grammar has no limitations (is unrestricted)

Valid production rules

Production rules have form of α→ β, where α, β ∈ V

aaaA→ aBb

LLQQ → LQ

S → ε

C → cC

D → E

abcD → abc

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 18 / 45

Type-0 : Grammar example

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S ,A,B,C ,D}
VT = {a}
P = {S → ADBC ,D → DD,DB → BEEE ,ABE → aAB, aABC → a}

Derivations

S =⇒ ADBC =⇒ ADBC =⇒ ABE EEC =⇒ aABE EC =⇒
aaABE C =⇒ aaaABC =⇒ aaa

Language

L(G) = {am}, where m = 3n ∧ n ≥ 1

Example sentences
aaa, aaaaaa, aaaaaaaaa, aaaaaaaaaaaa, aaaaaaaaaaaaaaa, ...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 19 / 45

Type-1 : Context-sensitive grammar

Description

Productions rules of type-1 grammar don’t decrease the length of the
words (i.e. |α| ≤ |β|) during derivations

Valid rules

S → ε

C → cC

D → E

aBc → abBc

Invalid rules

aaaA→ aBb

LLQQ → LQ

abcD → abc

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 20 / 45

Type-1 : Grammar example

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S ,A,B,C ,D,E ,F}
VT = {a, b, c}
P = {S → abC |Ac |Dbc|aEF |aB,A→ ab,Db → ab,B → bc, bC →
bc,F → c,Ec → bc}

Derivations

S =⇒ abC =⇒ abc

S =⇒ Ac =⇒ abc

S =⇒ aE F =⇒ aEc =⇒ abc

Language and example sentence

L(G) = {abc}

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 21 / 45

Type-2 : Context-free grammar

Description

Rules A→ β in context-free grammar have one variable (nonterminal) on
the left hand side (A ∈ VN) and they derive into any word (β ∈ V ∗)

Valid rules

S → ε

C → cC

D → E

F → abcdef

Invalid rules

aaaA→ aBb

LLQQ → LQ

aBc → abefBc

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 22 / 45

Type-2 : Grammar example

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S ,A,B}
VT = {a, b}
P = {S → aSB, S → A,A→ ab,B → b}

Derivations

S =⇒ aSB =⇒ aaSBB =⇒ aaSBb =⇒ aaSbb =⇒ aaabbb

Language

L(G) = {anbn}, where n ≥ 1

Example sentences

ab, aabb, aaabbb, aaaabbbb, aaaaabbbbb, aaaaaabbbbbb, ...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 23 / 45

Type-3 : Regular grammar

Description

Rules in regular grammar have form of A→ a and A→ aB (right
recursion) or A→ Ba (left recursion), where A,B ∈ VN and a ∈ VT

Valid rules

C → cD

D → Dc

S → b

Invalid rules

S → ε

D → E

aBc → abefBc

F → abcdef

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 24 / 45

Grammar example – regular

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S ,B}
VT = {a, b}
P = {S → aB,B → bS ,B → b}

Derivation

S =⇒ aB =⇒ abS =⇒ abaB =⇒ ababS =⇒ ababaB =⇒ ...

Language

L(G) = {(ab)n}, where n ≥ 1.

Example sentences

ab, abab, ababab, abababab, ababababab, abababababab, ...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 25 / 45

Normal forms

Let A,B ∈ VN , a ∈ VT and β ∈ VN
∗, then:

The Chomsky normal-form

All productions of a grammar have the form of A→ BC or A→ a

The Greibach normal-form

All productions of a grammar have the form A→ aβ

Theorem

Any context-free language can be generated by a grammar in Chomsky
normal-form

Theorem

Any context-free language can be generated by a grammar in Greibach
normal-form

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 26 / 45

Normal forms

We saw that L(G) = {anbn}, where n ≥ 1 is a language created by a
grammar G with production rules:

P = {S → aSB,S → A,A→ ab,B → b}
But there are other rules P ′ from grammar G ′ in a Chomsky normal-form
that will give us the same language L(G) = L(G ′):

P ′ = {S → CB,D → SB, S → CD,C → a,B → b}

Derivation a3b3

S =⇒ C D =⇒ aD =⇒ aSB =⇒ aC Db =⇒ aaDb =⇒
aaSBb =⇒ aaSbb =⇒ aaC Bbb =⇒ aaaBbb =⇒ aaabbb

And rules P ′′ from grammar G ′′ in a Greibach normal form:

P ′′ = {S → aD,D → aDB,D → aBB,B → b}

Derivation a3b3

S =⇒ aD =⇒ aaDB =⇒ aaaBBB =⇒ aaabBB =⇒ aaabbB =⇒ aaabbb

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 27 / 45

Derivation trees

Figure 4: Derivations trees for word a3b3. a. derivation in grammar G , b.
derivation in grammar G ′ (Chomsky normal-form), c.1 derivation in grammar G ′′

(Greibach normal-form)

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 28 / 45

Grammar example: mirror language

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S}
VT = {a, b}
P = {S → aSa,S → bSb, S → aa,S → bb}

Derivations

S =⇒ aSa =⇒ abSba =⇒ abbSbbs =⇒ abbaSabba =⇒ ...

Language

L(G) = {wwR}, where wR represents reflection of w , and |w | ≥ 1. This
language L(G) is called a mirror language.

Example sentences

aa, bb, aaaa, abba, baab, bbbb, abaaba, baaaab, abbbba, babbab, aaaaaa...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 29 / 45

Grammar example

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S ,E ,F}
VT = {a, b, c , d}
P = {S → ESF ,S → EF ,E → ab,F → cd}

Derivations

S =⇒ E SF =⇒ EE SFF =⇒ EEE SFFF =⇒ E n−1SF n−1 =⇒ E nF n

Language

L(G) = {(ab)n(cd)n}, where n ≥ 1.

Example sentences

abcd , ababcdcd , abababcdcdcd , ababababcdcdcdcd , ...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 30 / 45

Grammar example

Grammar

Let G = (VN ,VT ,P, S), where

VN = {S ,E ,F}
VT = {a, b, c , d}
P = {S → ESF ,S → abcd ,Ea→ aE , dF → Fd ,Eb → abb, cF → ccd}

Derivations
S =⇒ ESF =⇒ EabcdF =⇒ aEbcdF =⇒ aEbcFd =⇒ aabbcFd =⇒ aabbccdd

Language

L(G) = {anbncndn}, where n ≥ 2.

Sentences

aabbccdd , aaabbbcccddd , aaaabbbbccccdddd , aaaaabbbbbcccccddddd , ...

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 31 / 45

Language and grammar

A few common tasks:

Check language correctness

Generate language from grammar

Generate grammar for language

Classify grammar (according to the Chomsky hierarchy)

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 32 / 45

Backus-Naur form (BNF)

Backus-Naur form (BNF)

Notation technique for context-free grammars. Frequently used to describe
syntax of programming languages, document formats etc.

Syntax

<term> ::= __expression__

<term> is a nonterminal

__expression__ is a sequence of one or more terminal and/or
nonterminal symbols separated by vertical line |

Terminal symbols: a, b, c, A, 0, 1, 2 etc.

Nonterminal symbols: <digit>, <postal-code> etc.

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 33 / 45

Backus-Naur form (BNF)

Meta-symbols

::= – production rule definition

| – rule alternative

<> – nonterminals

”” – literal

< EOL > – End Of Line

Examples

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<postal-code> ::= <digit> <digit> <digit> <digit> <digit>

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 34 / 45

BNF example : Palindrome

Palindrome grammar

<letter> ::= a | b | c | ... | y | z

<palindrome> ::= <letter> |

<palindrome> ::= a <palindrome> a | b <palindrome> b |

c <palindrome> c | d <palindrome> d |

e <palindrome> e | ...

| z <palindrome> z

Results
a

bb

bab

pop

hannah

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 35 / 45

BNF example : Postal address

Postal address grammar
<postal-address> ::= <name-part> <street-address> <zip-part>

<name-part> ::= <first-name> <last-name> <EOL>

<street-address> ::= <number> <street-name> <apt-num> <EOL>

<zip-part> ::= <postal-code> <town-name> <EOL>

<apt-num> ::= <number> | ""

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 36 / 45

Lexer vs parser

Figure 5: A scheme for lexical and semantic analysis1

Lexical analysis converts a sequences of characters into a sequence of
tokens (strings with meanings)

Semantic analysis matches a sequence of tokens into some language’s
construct

1
From ANTLR4 on-line documentation

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 37 / 45

ANTLR v4

Parser generator

Generate lexer and parser for given grammar.

ANTLR

A parser generator which allows to:

Perform lexical analysis (lexer)

Perform semantic analysis (parser)

Code transformation

Perform code evaluation

Usages

Twitter search queries are parsed using ANTLR

Lex Machinaa extracts informations from legal texts using ANTLR

alexmachina.com

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 38 / 45

ANTLR syntax (I)

Grammar structure

grammar ANY NAME;
o p t i o n s { . . . }
i m p o r t . . . ;
t o k e n s { . . . }
c h a n n e l s { . . . }
@actionName { . . . }
// l e x e r r u l e s
LEXER RULE1
LEXER RULE2
// p a r s e r r u l e s
p a r s e r r u l e 1
p a r s e r r u l e 2

Grammar properties

Each section can be specified in any order

Only one definition for sections: options,
imports, tokens

The header and at least one rule are
mandatory

Reserved keywords

import, fragment, lexer, parser, grammar,
returns, locals, throws, catch, finally, mode,
options, tokens

Grammar file

The file name with grammar ANY NAME must be called ANY NAME.g4

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 39 / 45

ANTLR syntax (II)

Syntax Description
x Match token, rule or subrule x

xyz Match a sequence of elements
(...|...|...) Sub-rule with multiple alternatives

x? Match x or skip it
x∗ Match x zero or more times
x+ Match x one or more times

r : ... Define rule r
r : (...|...|...) Define rule r with multiple alternatives

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 40 / 45

First grammar

Simple grammar (Hello.g4)

// define a grammar called Hello

grammar Hello;

// match lower-case identifiers

ID : [a-z]+;

// skip spaces, tabs, newlines, \r (Windows)

WS : [\t\r\n]+ -> skip;

// match keyword hello followed by an identifier

r : ’hello’ ID;

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 41 / 45

Nested arrays

Nested arrays grammar (ArrayInit.g4)

grammar ArrayInit;

// matches at least one comma-separated value between {...}

init : ’{’ value (’,’ value)* ’}’;

// A value can be either a nested array or an integer (INT)

value : init | INT;

// define token INT as one or more digits

INT : [0-9]+;

WS : [\t\r\n]+ -> skip;

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 42 / 45

ANTLR patterns

Pattern name Examples
Sequence ’[’ INT+ ’]’

Sequence with terminator (statement ’;’)*

Sequence with separator (expr (’,’ expr)*)?

Choice type : ’int’ | ’float’

Token dependency ID ’[’ expr ’]’

Nested phrase expr : ’(’ expr ’)’ | ID

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 43 / 45

Parser tester

Parser

import org . a n t l r . v4 . runt ime .∗ ;
import org . a n t l r . v4 . runt ime . t r e e .∗ ;

p u b l i c c l a s s Test {
p u b l i c s t a t i c v o i d main (S t r i n g [] a r g s) throws Excep t i on {

// c r e a t e a CharStream tha t r e ad s from s tanda rd i npu t
ANTLRInputStream inpu t = new ANTLRInputStream (System . i n) ;
// c r e a t e a l e x e r t ha t f e e d s o f f o f i n pu t
CharStream A r r a y I n i t L e x e r l e x e r = new A r r a y I n i t L e x e r (i n pu t) ;
// c r e a t e a b u f f e r o f tokens p u l l e d from the l e x e r
CommonTokenStream tokens = new CommonTokenStream (l e x e r) ;
// c r e a t e a p a r s e r t ha t f e e d s o f f the tokens b u f f e r
A r r a y I n i t P a r s e r p a r s e r = new A r r a y I n i t P a r s e r (tokens) ;
ParseTree t r e e = p a r s e r . i n i t () ;
System . out . p r i n t l n (t r e e . t o S t r i n gT r e e (p a r s e r)) ;

}
}

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 44 / 45

Calculator

grammar Expr;

prog: stat+;

stat: expr NEWLINE

| ID ’=’ expr NEWLINE

| NEWLINE;

expr: expr (’*’|’/’) expr

| expr (’+’|’-’) expr

| INT

| ID

| ’(’ expr ’)’;

ID : [a-zA-Z]+;

INT : [0-9]+;

// return newlines to parser (is end -statement signal)

NEWLINE: ’\r’? ’\n’;

WS : [\t]+ -> skip;

Patryk Kiepas (MINES ParisTech & AGH) Theory of languages March 11, 2017 45 / 45

	Course information
	Theory
	Languages
	Grammars
	Hierarchy of grammars
	Examples of grammars

	Practice
	Notations of grammar
	ANTLR
	ANTLR examples

