& EFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

Programming: Reliable Transport - Alternating Bit

This lab is to be completed in teams of two. Callaltive conversations between yours and other
teams with regard to syntax, strategies and metfimd€ompleting the lab are encouraged;
however design and implementation must be the wbrthe team that is handing in the final
product. Make sure the work/understanding is shheddeen team members.

Overview

In this laboratory programming assignment you w#k a guided, building block approach to
write the sending and receiving transport-levelectmr an implementation of the simple reliable
data transfer protocol (rtd 3.(emember, the transport level is responsible for passing messages
between the application layer and network layer on a host in order to allow two processes to
communicate.

Since we can’'t modify the Windows XP operating sgston our lab computers, your code will
have to execute in a simulated hardware/softwarer@ment. However, the programming
interface provided to your routines, i.e., the ctiugt would call your entities from above and
from below is very close to what is done in an actuNIX environment. (Indeed, the software
interfaces described in this programming assignmeatmuch more realistic than the infinite
loop senders and receivers that many texts dejcritepping/starting of timers is also
simulated, and timer interrupts will cause yourdirhandling routine to be activated.

Step 1Understanding the Simulated Environment

First you will load the code that creates the sated environment as well as thiagle class that
you will modify to complete this lab:

» Download the ReliableTransportStarter.zipfile from the Campus EFREI.

* Unzip the file to a directory on your X drive whereu plan to work.

* In NetBeans 5.5.x (or Eclipse), open a New Progect choose from the “General”
category “Java Project with Existing Sources.” =exN

* Give your project the name “<Your LName> Labarid a working directory =>Next

GEFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

e Add folder ReliableTransportStarter as your Soltaekage. =>Finish

* Open StudentNetworkSimulator.java and add your nantethe date to the comments at
the beginning of the fileThis is the only file you will need to read and moidly. The
other files are provided only for your curiositydaconvenience.

The supplied Java code simulates both an applicédiger (layer 5) and a network layer (layer 3)
that your transport protocol must interact with.eTimethods you will write are for the sending
entity (A) and the receiving entity (BOnly unidirectional transfer of data (from A to B) is
required. However, the B side will ultimately have to send packets to A to acknowledge receipt of
data. The general structure of the emulated environnmsehbeiow:

Layer 5 A Side (Sender) Layer 5 B Side (Receiver)
Your Transport Protocol Your Transport Protocol
+ : T
Packet ack ACK packet

| ¢ i |

Layer 3 An Unreliable Network

The unit of data passed between the upper layeryaur protocols is anessage, which is a 20-
byte string (implemented as a Java class with gatBad setData methods). Your sending entity
will thus receive data in 20-byte chunks from I&ygrour receiving entity should deliver 20-byte
chunks of correctly received data to layer5 atréeeiving side.

The unit of data passed between your routines laadetwork layer is thpacket, which is
declared as:

public class Packet

{
private int seqnum
private int acknum
private int checksum
private String payl oad;
}

GEFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

There are associated useful methods to manipulBeket object and those are detailed in the
comments of the StudentNetworkSimulator.java clage packet fields will be used by your
protocols to insure reliable delivery, as we'venseeclass.

The Transport Layer Routines You Will Write

The four methods you will fill in are detailed beloThese methods will be called by (and will
call) methods that have been provided to interattt the emulated network environment. Your
routines will fill in the payload field from the resage data passed down from layer 5 and send
them through layer 3. As noted above, such methodsal-life would be part of the operating
system, and would be called by other methods irogeeating system.

1. aOutput(Message messageyvherenessage contains data to be sent to the B-side. This
routine will be called whenever the upper layethat sending side (A) has a message to
send. It is the job of your protocol to insure thia data in such a message is delivered
in-order, and correctly, to the receiving side ugpger.

2. alnput(Packet packet) -This routine will be called whenever a packet $emh the B-
side (i.e., as a result oftaLayer 3() being done by a B-side method) arrives at the A-
side.packet is the (possibly corrupted) packet sent from thadz.

3. aTimerinterrupt() - This routine will be called when A's timer expif@sus generating
timer interrupt). You'll probably want to use thi@utine to control the retransmission of
packets. Seatart Timer() andstopTimer() below for how the timer is started and
stopped.

4. blnput(Packet packet) - This routine will be called whenever a packet $eoh the A-
side (as a result of eoLayer 3() being done by a A-side method) arrives at thed#-si
Thepacket object is the (possibly corrupted) packet sennftbe A-side.

A-slde (sending) B-zlde {recelving)

layer & (upper layers) layer 5 (upper layers)
I
| tolayers:)
i
j |
_sutaut) A_lnltq spaimery B_lnit) stptimer)
startimer:) starttimer)
A_Input; A_tmerinterrupt) @ B_timeHnterrupt:) O
- put] L S I B_Input) — L
] A's imer | B's tmer
| tolayer3i) | wlayera)

A medium which can lose, delay and corruptpackets

GEFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

Software Interfaces

To help you with this project, you are providedhwibllowing routines which can be called by
your methods:

« toLayer3(int callingEntity, Packet p), wherecal I i ng_entity is either O (for the A-side
send) or 1 (for the B side send), ands a Packet Calling this routine will cause the
packet to be sent into the network, destined ferdather entity.

+ toLayer5(String string) With unidirectional data transfer, you would only alling this
from to the B-side. Calling this routine will caudata to be passed up to layer 5.

« protected void startTimer(int callingEntity, double increment), whereenti ty is either
0 (for starting the A-side timer) or 1 (for stagithe B side timer), andncrenent is a
double value indicating the amount of time that will pdsfore the timer interrupts. A's
timer should only be started (or stopped) by A-siglgtines, and similarly for the B-side
timer. To give you an idea of the appropriate ingzat value to use: a packet sent into the
network takes an average of 5 time units to amivihe other side when there are no other
messages in the medium.

« stopTimer(int callingEntity), whereentity is either O (for stopping the A-side timer)
or 1 (for stopping the B side timer).

Your first step is to write the java code that diates a transport protocol that sits on a
completely reliable network layer. Recall from the text that the FSM for the seraled receiver
in this unlikely scenario is as follows:

Wait fOI’ rdt_send(datze
call from packet=make_pkt (data)
above 1dt_send (packet)

a. rdt1.0: sending side

‘ 1
Wait for rdt_rcvipacxet)
call from extract (et ,data)
below deliver_data(data)

b. rdt1.0: receiving side

Figure 3.9 ¢ rdt1.0 - A protocol for a completely reliable channel

After examining these FSMs you should very quialdglize that all the transport layer needs to
do in this case is take a message from the appiicktyer, packetize it by encapsulating it in

GEFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

some additional data, and then send it througméteork layer. The steps are reversed on the
receiver side.

In StudentNetworkSimulator.java class this carbalaccomplished by filling in the missing code
from the following methods:aQut put (Message nessage) and bl nput (Packet
packet). You will simply need to use the previously mentidreaftware interfaces to turn a
message into a packet, send it through layer 3, fibigieve the message on the receiver side and
pass it up to layer 5. This should require no ntbaa five lines of code.

When creating the packet for this first task, us@lae of zero in each of the data fields int seq,
int ack, int check. It is highly encouraged thatyseSyst em out . pri nt | n to display what
data the message is comprised of (i.e. “A sentWhen you compile and run the program,
accept all defaults from the GUI control panel. ¥output should look similar to this:

sent: aaaaaaaaaaaaaaaaaaaa
recei ved: aaaaaaaaaaaaaaaaaaaa
sent: bbbbbbbbbbbbbbbbbbbb
recei ved: bbbbbbbbbbbbbbbbbbbb

o>w>

If your code works correctly, a file named OutpleRwill be created in your Project Folder (not
in your Source Folder) containing the contentshefpackets sent from A to B.

Step 2 Create Pseudo Code

Now that your simple code works inside the emulgtmr should have an understanding of how
your transport layer interacts with the layers abawnd below it. As noted in lecture, rdt 1.0 is
basically useless and we didn’'t have a realistitgmol until we developed rdt 3.0. The ultimate
goal of this lab is to implement rdt 3.0 within emulator.

rdt 3.0 Receiver

Both the sender and receiver side of rdt 3.0 haveptex FSM’s (see the diagrams on the next
page), and to get ourselves organized before wgramo their code we need to make some
pseudo codeDownload the file “LabPsuedo.txt” from Campus EFREI It contains general

pseudo code for most of the steps which need ® pédce for a successful coding of rdt 3.0...
with the exception of some key words that were ketgnout. Take the time now fill in the blanks

of the pseudo code based on the steps dictateaelblySMs of rdt 3.0You will turn this page

in for grading.

& EFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -
Interconnexions 29/11/2012
rdt_send{data)
sndpkt=make_pKt {0, data, checksum)
udt_send | sndpkt } rdt_rcvircvpkt) &&
start_vimer {corrupt{rcvpkt) ||
Mo isACKircvpkt, 1))
N
\\ A
rdt_recv(rocvpkt) Y
A Wait for timeout
Wait for e —
call 0 from ACK 0 udt_send (sndpkt)
above start_timer

rdt_rcvircevpko)

&& notcorrupt (rovpkt)

&& 1sACK (revpke, 1) rdt_revircvpko)

&& notcorrupt (rovpkt)
&& 1sACK(rcvpker,0)

stop_timer

stop_timer

timeout O Wait for
udt_send(sndpkt) Aa(;K 101’ call 1 from
start_timer above
rde_recvrcvpkt)
rdt_revirevpkt) && A
{corrupt (revpktl ||
isACK{rcvpkt,0)) rdt_send (data)
A

sndpkt=make_pkt {1,data,checksum)
udt_send (sndpkt}
start_timer

Figure 3.15 ¢ rdt3.0 sender

rdt_revircevpkt) && notcorrupt (revpkr)
&& has_seq0 (rcvpkt)

extract (rcvpkt,data)
deliver_dataidata)
sndpkt=make_pkt (ACK, 0, checksum)

A udt_send{sndpkt)
oncethru=0 oncethru=1
\\ /-\
~
~
~
A
rdt_rcvircvpkt) && rdt_recvircvpkt) &&
{corrupt (revpkt} || Wait for Wait for {corrupt (revpkt) I |
has_seql (rcvpkt)) 0 from 1 from has_seql (rovpkt))
below below
if (oncethrus==1) udt_send (sndpkt)

e _’/

rdt_revircvpkt) && notcorrupt (revpkt)
&& has_seqgl (revpkt)

extract (rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt (ACK, 1,checksum)

udt _send{sndpkt)

rdt3.0 Receiver

& EFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

Step 3 Codingthe Alternating-Bit-Protocol

Once you have organized your thoughts with pseudi® you are almost ready to write the
methodsaQut put (), alnput (), aTimerlinterrupt(),andblnput(), which together will
implement a stop-and-wait (the alternating bit)tpcol which we referred to as rdt3.0 in the
text. First you need more background on the enwmemt.

The network layer is capable of corrupting andriggpackets. It will not reorder packets. When
you compile your methods and the provided codethmyeand run the resulting program, you are
able to specify the following values regarding siraulated network environment:

Number of messages to simulatéhe emulator (and your routines) will stop as saen
this number of messages has been passed downdyem3, regardless of whether or not
all of the messages have been correctly delivefdals, you neechot worry about
undelivered or unACK'ed messages still in your semnehen the emulator stops. Note that
if you set this value to 1, your program will terrate immediately, before the message is
delivered to the other side. Thus, this value sthaiways be greater than 1.

Loss.You are asked to specify a packet loss probab#ityalue of 10% (0.1) would

mean that one in ten packets (on average) are lost.

Corruption. You are asked to specify a packet corruption pridibabA value of 20%

(0.2) would mean that one in five packets (on ayeyare corrupted. Note that the
contents of payload, sequence, ack, or checksuds foan be corrupted.

Tracing. Setting a tracing value of 1 or 2 will print outefisl information about what is
going on inside the emulation (e.g., what's hapgetd packets and timers). A tracing
value of O will turn this off. A tracing value grea than 2 will display all sorts of odd
messages that are for the emulator’'s debuggingopas A tracing value of 2 may be
helpful to you in debugging your code.

Average time between messages from sender's layer¥mu should choose a very large
value for the average time between messages froatess layer5 (~1000) so that your
sender is never called while it still has an oudiag, unacknowledged message it is
trying to send to the receiver.

Helpful Hints and the like

A simplified checksum method has been providedytar. Furnish it the requested fields
at either A or B and it will return the same intua

START SIMPLE. Set the probabilities of loss andraption to zero and test out your
routines. Then handle the case of one of theseapiities being non-zero, and then
finally both being non-zero.

Any shared "state" among your routines needs tim lbee form of global variables. Any
information that your methods need to save fromiomecation to the next must also be a
global (or static) variable. For example, your nees will need to keep a copy of a packet
for possible retransmission. It would be a goodnidler such a data structure to be a
global variable in your code. Note, however, ttiairie of your global variables is used
by your sender side, that variable shoNIOT be accessed by the receiving side entity,
since in real life communicating entities cannatrshglobal variables.

7

GEFREI

ECOLE D'INGENIEURS DES TECHNOLOGIES
DE L'INFORMATION ET DU MANAGEMENT

Laboratoire Télécom&Réseaux Protocoles -Interconnexions 29/11/201 2

« There is a float global variable callade that you can access from within your code to
help you out with your diagnostics msgs.

« Debugging.We'd recommend that you set the tracing level &m@ put LOTS of printins
in your code while you are debugging your methods.

Submission

Turn in your filled in your hard copy of the pseedde, an electronic copy of your modified
StudentNetworkSimulator.java code and a hard copytqut of your code output running with
trace level 2, 10 messages, a loss probability. bfabid a corruption probability of 0.3. Make
sure you have included sufficient printlns in yaode so that the output is clear. For example,
your methods might print out a message whenevewant occurs at your sender or receiver.

