"4

efFrei

PARIS SUD

ECOLE D'INGENIEUR

Selective Repeat (SR)

The GBN protocol allows the sender to potentially "fill the pipeline" in "Pipelined Reliable Data Transfer
Protocols" Figure 2 with packets, therefore avoiding the channel utilization problems we noted with
stop-and-wait protocols. There are, on the other hand, scenarios in which GBN itself suffers from
problems. Particularly, when the window size and bandwidth-delay product are both large, many
packets can be in the pipeline. A single packet error can thus cause GBN to retransmit a large number
of packets, many unnecessarily. As the probability of channel errors increases, the pipeline can become

filled with

Sender

Beng pkeo \
: E rcv pkt0

send pktl ° . send ACKO

(wait)

send pkt5

‘- pkt2 timeout
send pkt2
send pkt3
send pkt4
send pkt5

send pkt2 E

send pkt3

rcv ACKO -

send pkt4
rcv ACK1 !

Recelver

E rcv pktl
. send ACK1

. rcv pke3l,
- send ACKl

. rcv pkt4,
. send ACK1

- rcv pkt5,
. send ACK1

« rev pkt2,
. send ACK2
. rcv pkt3,

send ACK3

Figure 1. Go-Back-N in operation

discard

discard

discard

deliver

deliver

these unnecessary retransmissions. Imagine, in our message-dictation scenario, that if every time a
word was garbled, the surrounding 1,000 words (for instance, a window size of 1,000 words) had to be
repeated. The dictation would be slowed by all of the reiterated words.



".i el__'_ei €COLE D'INGENIEUR

PARIS SUD

As the name suggests, selective-repeat protocols avoid unnecessary retransmissions by having the
sender retransmit only those packets that it suspects were received in error (that is, were lost or
corrupted) at the receiver. This individual, as-needed, retransmission will require that the receiver
individually acknowledge correctly received packets. A window size of N will again be used to limit the

number
| T -
I00000noeOooonooonOnOn - Messe Qe
Windtlwws size D;T;‘&:" Umt usable

N

b. Receiver view of sequence numbers

Figure 2. Selective-repeat (SR) sender and receiver views of
sequence-number space

of outstanding, unacknowledged packets in the pipeline. However, unlike GBN, the sender will have
already received ACKs for some of the packets in the window. Figure 2 shows the SR sender's view of
the sequence number space. Figure 3 details the various actions taken by the SR sender.

The SR receiver will acknowledge a correctly received packet whether or not it is in order. Out-of-order
packets are buffered until any missing packets (that is, packets with lower sequence numbers) are
received, at which point a batch of packets can be delivered in-order to the upper layer. Figure 4
itemizes the various actions taken by the SR receiver. Figure 5 shows an example of SR operation in
the presence of lost packets. Note that in Figure 5, the receiver initially buffers packets 3, 4 and 5 and
delivers them together with packet 2 to the upper layer when packet 2 is finally received.

It is important to note that in Step 2 in Figure 4, the receiver reacknowledges (rather than ignores)
already received packets with certain sequence numbers below the current window base. You should
convince yourself that this reacknowledgment is indeed needed. Given the sender and receiver
sequence number spaces in Figure 2, for instance, if there is no ACK for packet send_base propagating
from the receiver to the sender, the sender will ultimately retransmit packet send_base, even though
it is clear (to us, not the sender!) that the receiver has already received



. , T
wrefrei L

PARIS SUD
ieu t technologies du numériq

1. Data received from above. When data is received from above, the SR sender
checks the next available sequence number for the packet. If the sequence
number is within the sender's window, the data is packetized and sent;
otherwise it is either buffered or returned to the upper layer for later
transmission, as in GBN.

2. Timeout. Timers are again used to protect against lost packets. However, each
packet must now have its own logical timer, since only a single packet will be
transmitted on timeout. A single hardware timer can be used to mimic the
operation of multiple logical timers [Varghese 1997].

3. ACK received. If an ACK is received, the SR sender marks that packet as
having been received, provided it is in the window. If the packet's sequence
number is equal to send_base, the window base is moved forward to the
unacknowledged packet with the smallest sequence number. If the window
moves and there are untransmitted packets with sequence numbers that now
fall within the window, these packets are transmitted.

Figure 3. SR sender events and actions

1. Packet with sequence number in [rcv_base, rcv_base+N-1] is correctly
received. In this case, the received packet falls within receiver's window and a
selective ACK packet is returned to the sender. If the packet was not previously
received, it is buffered. If this packet has a sequence number equal to the base
of the receive window (rcv_base in Figure 1), then this packet, and any
previously buffered and consecutively numbered (beginning with rcv_base)
packets are delivered to the upper layer. The receive window is then moved
forward by the number of packets delivered to the upper layer. As an example,
look at Figure 5. When a packet with a sequence number of rcv_base=2 is
received, it and packets 3,4 and 5 can be delivered to the upper layer.

2. Packet with sequence number in [rcv_base-N, rcv_base-1] is correctly
received. In this case, an ACK must be generated, even though this is a packet
that the receiver has previously acknowledged.

3. Otherwise. Ignore the packet.

Figure 4. SR receiver events and actions

that packet. If the receiver were not to acknowledge this packet, the sender's window would never
move forward. This example illustrates an important aspect of SR protocols (and many other protocols
as well). The sender and receiver will not always have an identical view of what has been received
correctly and what has not. For SR protocols, this means that the sender and receiver windows will not
always coincide.



efFrei

PARIS SUD

"q

ECOLE D'INGENIEUR

Sender

pkt0 sent
0123456789

pktl sent
0123456789

— pkt2 sent
01234567829

pkt3 sent, window full
0123456789
ACKO recvd, pktd sent

0123456789

ACK1 revd, pkt5 sent
01234567829

|__pkt2 TIMEQUT, pkt2
resent

0123456789

ACIB revd, nothing sent
0123456789

(loss)

R

.

Figure 5. SR operation

Receiver

pkt0 rcvd, delivered, ACKO sent
01234567829

pktl rcvd, delivered, ACK1 sent
01234567829

pkt3 rcvd, buffered, ACK3 sent
0133856 7839

pktd rcvd, buffered, ACK4 sent
0123456789

pkt5 rcvd; buffered, ACK5 sent
012345671789

pkt2 revd, pkt2, pkt3, pktd, pkt5
delivered, ACK2 sent

01234567829

The lack of synchronization between sender and receiver windows has important consequences when
we are faced with the reality of a finite range of sequence numbers. Consider what could happen, for
example, with a finite range of four packet sequence numbers, 0,1,2,3 and a window size of three.
Suppose packets 0 through 2 are transmitted and correctly received and acknowledged at the receiver.
At this point, the receiver's window is over the fourth, fifth and sixth packets, which have sequence
numbers 3,0 and 1, respectively. Now consider two scenarios. In the first scenario, shown in Figure
6(a), the ACKs for the first three packets are lost and



"4

efFrei

PARIS SUD

€ECOLE D'INGENIEUR
Inform tig
logies du numeric

Sender window Receiver window
{after receipt) {after receipt)
0123012 :Pko o
: _SACKO 0123012
- ktl -
©123012 :p L
. CACKL 0123012
0123012 :pk N
»
. X/ SACK2 0123012
>k
/ -
: ) O 2
timeout / .
retransmit pkt0 X
. bkt0 :
a3 01 2 i -+ . receive packet
. with seq number 0
v v
a.
Sender window Receiver window
{after receipt) {after receipt)
0123012 pkto :
N —_—
: -2 ACKO 0123012
0123012 :pkl > o
. pl—,
tACK1 0123012
0123012 :pk2 S i
7 ACK2 0123012
P >
/ / it
L .
023012 pkt3 - :
. //‘*' X/ =
0123012 -pkto o
E o \\ 3
: T receive packet
- with seq number 0
v ¥

Figure 6. SR receiver dilemma with too-large windows:
A new packet or a retransmission

the sender retransmits these packets. The receiver thus next receives a packet with sequence number
0 - a copy of the first packet sent.

In the second scenario, shown in Figure 6(b), the ACKs for the first three packets are all delivered
correctly. The sender thus moves its window forward and sends the fourth, fifth, and sixth packets,
with sequence numbers 3,0 and 1, respectively. The packet with sequence number 3 is lost, but the
packet with sequence number 0 arrives - a packet containing new data.



'P eF'_ei ECOLE D'INGENIEUR

PARIS SUD

Now consider the receiver's viewpoint in Figure 6, which has a figurative curtain between the sender
and the receiver, since the receiver cannot "see" the actions taken by the sender. All the receiver
observes is the sequence of messages it receives from the channel and sends into the channel. As far
as it is concerned, the two scenarios in Figure 6 are identical. There is no way of distinguishing the
retransmission of the first packet from an original transmission of the fifth packet. Clearly, a window
size that is 1 less than the size of the sequence number space won't work. The window size must be
less than or equal to half the size of the sequence number space for SR protocols.

This completes our discussion of reliable data transfer protocols. We've covered a lot of ground and
introduced various mechanisms that together provide for reliable data transfer. Table 1 summarizes
these mechanisms. Now that we have seen all of these mechanisms in operation and can see the "big
picture", we encourage you to review this section again to see how these mechanisms were
incrementally added to cover increasingly complex (and realistic) models of the channel connecting
the sender and receiver, or to improve the performance of the protocols.

Let's end our discussion of reliable data transfer protocols by considering one remaining assumption
in our underlying charnel model. Recall that we have assumed that packets cannot be reordered within
the channel between the sender and receiver. This is usually a reasonable assumption when the sender
and receiver are connected by a single physical wire. On the other hand, when the "channel"
connecting the two is a network, packet reordering can occur. One manifestation of packet reordering
is that old copies of a packet with a sequence or acknowledgment number of x can appear, even though
neither the sender's nor the receiver's window contains x. With packet reordering, the channel can be
thought of as essentially buffering packets and spontaneously emitting these packets at any point in
the future. Because sequence numbers may be reused, some care must be taken to guard against such
duplicate packets. The approach taken in practice is to ensure that a sequence number is not reused
until the sender is "sure" that any previously sent packets with sequence number x are no longer in
the network. This is done by assuming that a packet cannot "live" in the network for longer than some
fixed maximum amount of time. A maximum packet lifetime of approximately three minutes is
assumed in the TCP extensions for high-speed networks. Sunshine 1978 describes a method for using
sequence numbers such that reordering problems can be completely avoided.



> = : INGE
wrelfrei Saacmmme

PARIS SUD
Ingénieurs er , et technologies du numérique

Mechanism Use, Comments
Checksum Used to detect bit errors in a transmitted packet.
Timer Used to timeout/retransmit a packet, possibly because the

packet (or its ACK) was lost within the channel. Because
timeouts can occur when a packet is delayed but not lost
(premature timeout), or when a packet has been received by
the receiver but the receiver-to-sender ACK has been lost,
duplicate copies of a packet may be received by a receiver.

Sequence number Used for sequential numbering of packets of data flowing from
sender to receiver. Gaps in the sequence numbers of received
packets allow the receiver to detect a lost packet. Packets with
duplicate sequence numbers allow the receiver to detect
duplicate copies of a packet.

Acknowledgment Used by the receiver to tell the sender that a packet or set of
packets has been received correctly. Acknowledgments will
typically carry the sequence number of the packet or packets
being acknowledged. Acknowledgments may be individual or
cumulative, depending on the protocol.

Negative acknowledgment Used by the receiver to tell the sender that a packet has not
been received correctly. Negative acknowledgments will
typically carry the sequence number of the packet that was not
received correctly.

The sender may be restricted to sending only packets with
sequence numbers that fall within a given range. By allowing
multiple packets to be transmitted but not yet acknowledged,
sender utilization can be increased over a stop-and-wait mode
of operation. We'll see shortly that the window size may be set
on the basis of the receiver's ability to receive and buffer
Window, pipelining message, or the level of congestion in the network, or both.

Table 1. Summary of reliable data transfer mechanisms and their use



