
P2	–A	networking	program	usually	has	two	programs,	
each	running	on	a	different	host,	communica9ng	with	

each	other.	The	program	that	ini9ates	the	
communica9on	is	the	client.	Typically,	the	client	
program	requests	and	receives	services	from	the	

server	program.	
	



P3	-	In		the	OSI		protocol		model,		
physical		communica9on		between		
peers	takes	place	only	in	the	lowest	

layer,	not	in	every	layer	
	



P4	–	Message	and	byte	streams	are	different.		
	
In	a	message	stream,	the	network	keeps	track	of	
message	boundaries.	In	a	byte	stream,	it	does	not.		
	
For	example,	suppose	a	process	writes	1024	bytes	to	a	
connec9on	and	then	a	liMle	later	writes	another	1024	
bytes.	The	receiver	then	does	a	read	for	2048	bytes.		
	
With	a	message	stream,	the	receiver	will	get	two	
messages,	of	1024	bytes	each.		
	
With	a	byte	stream,	the	message	boundaries	do	not	
count	and	the	receiver	will	get	the	full	2048	bytes	as	a	
single	unit.	The	fact	that	there	were	originally	two	
dis9nct	messages	is	lost.		
	
	



P5	–Nego9a9on	has	to	do	with	geQng	both	
sides	to	agree	on	some	parameters	or	

values	to	be	used	during	the	
communica9on.	Maximum	packet	size	is	
one	example,	but	there	are	many	others.		



P6	–	Both	models	are	based	on	layered	protocols.	
Both	have	a	network,	transport,	and	applica9on	layer.	
In	both	models,	the	transport	service	can	provide	a	
reliable	end-to-end	byte	stream.	On	the	other	hand,	
they	differ	in	several	ways.		
	
The	number	of	layers	is	different,	the	TCP/IP	does	not	
have	session	or	presenta9on	layers,	OSI	does	not	
support	internetworking,	and	OSI	has	both	
connec9on-oriented	and	connec9onless	service	in	the	
network	layer.		
	



P7		
A)	Data	link	layer	
B)	Network	layer	



P8	–	Among	other	reasons	for	using	layered	
protocols,	using	them	leads	to	breaking	up	
the	design	problem	into	smaller,	more	
manageable	pieces,	and	layering	means	that	
protocols	can	be	changed	without	affec9ng	
higher	or	lower	ones.		
	



P9	–	TCP	is	connec9on	oriented,	whereas	UDP	is	a	
connec9onless	service.		
	



P10	–	Connec9on-oriented	communica9on	has	
three	phases.		

1)	In	the	establishment	phase	a	request	is	made	to	set	
up	a	connec9on.		
	
2)	Only	aZer	this	phase	has	been	successfully	
completed	can	the	data	transfer	phase	be	started	and	
data	transported.		
	
3)	Then	comes	the	release	phase.		
	

Connec8onless	communica8on	does	not	have	
these	phases.	It	just	sends	the	data.		
	



P11	–	Frames	encapsulate	packets.	When	a	
packet	arrives	at	the	data	link	layer,	the	en9re	
thing,	header,	data,	and	all,	is	used	as	the	data	
field	of	a	frame.	The	en9re	packet	is	put	in	an	
envelope	(the	frame),	so	to	speak	(assuming	it	
fits).		
	



P12	–	With	n	layers	and	h	bytes	added	per	layer,	
the	total	number	of	header	bytes	per	message	is	
hn,	so	the	space	wasted	on	headers	is	hn.	The	
total	message	size	is	M+nh,	so	the	frac9on	of	
bandwidth	wasted	on	headers	is	hn/(M	+	hn).		
	



P13	–	If	the	network	tends	to	lose	packets,	it	is	
beMer	to	acknowledge	each	one	separately,	so	
the	lost	packets	can	be	retransmiMed.		
	
On	the	other	hand,	if	the	network	is	highly	
reliable,	sending	one	acknowledgement	at	the	
end	of	the	en9re	transfer	saves	bandwidth	in	the	
normal	case	(but	requires	the	en9re	file	to	be	
retransmiMed	if	even	a	single	packet	is	lost).		
	



P14	–	In	a	NAK	only	protocol,	the	loss	of	packet	x	is	
only	detected	by	the	receiver	when	packet	x+1	is	
received.		
	
That	is,	the	receivers	receives	x-1	and	then	x+1,	only	
when	x+1	is	received	does	the	receiver	realize	that	x	
was	missed.		
	
If	there	is	a	long	delay	between	the	transmission	of	x	
and	the	transmission	of	x+1,	then	it	will	be	a	long	9me	
un9l	x	can	be	recovered,	under	a	NAK	only	protocol.		
	
On	the	other	hand,	if	data	is	being	sent	oZen,	then	
recovery	under	a	NAK-only	scheme	could	happen	
quickly.	Moreover,	if	errors	are	infrequent,	then	NAKs	
are	only	occasionally	sent	(when	needed),	and	ACK	are	
never	sent	–	a	significant	reduc9on	in	feedback	in	the	
NAK-only	case	over	the	ACK-only	case.	



P15	–	First	of	all,	reliable	communica9on	(in	our	
sense,	that	is,	acknowledged)	may	not	be	
available.	For	example,	Ethernet	does	not	provide	
reliable	communica9on.		
	
Packets	can	occasionally	be	damaged	in	transit.	It	
is	up	to	higher	protocol	levels	to	deal	with	this	
problem.		
	
Second,	the	delays	inherent	in	providing	a	reliable	
service	may	be	unacceptable,	especially	in	real-
9me	applica9ons	such	as	mul9media.	For	these	
reasons,	both	reliable	and	unreliable	
communica9ons	coexist.	


