
Protocoles et Interconnexions

Course Overview and Introduction
Dario Vieira
Department of Computer Science
EFREI

Computer Networking

Preliminaries

Transport Layer

Network Layer

Link Layer

Physical Layer Transmission media

Ethernet

Routing

Internet protocol

TCP

UDP

Terminology

Introduction

Aplication Layer, advanced topics (e.g., wirelless, P2P,
Multimedia, security, and management

Other
 Topics

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Network Software

–  Protocol layers »
–  Design issues for the layers »
–  Connection-oriented vs. connectionless service

»
–  Service primitives »
–  Relationship of services to protocols »

What’s a protocol?
human protocols:
v  “what’s the time?”
v  “I have a question”
v  introductions

… specific msgs sent
… specific actions taken

when msgs received,
or other events

network protocols:
v  machines rather than

humans
v  all communication

activity in Internet
governed by protocols

protocols define format,
order of msgs sent and
received among network

entities, and actions
taken on msg

transmission, receipt
 Introduction 1-4

What’s a protocol?

A human protocol and a computer network protocol:

Hi

Hi
Got the
time?
2:00

TCP connection
response

Get http://www.awl.com/kurose-ross

<file>
time

 Introduction 1-5

TCP connection
request

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Protocol Layers (1)
■  Protocol layering is the main structuring method used to divide up

network functionality.

•  Each protocol instance talks
virtually to its peer

•  Each layer communicates
only by using the one below

•  Lower layer services are
accessed by an interface

•  At bottom, messages are
carried by the medium

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Protocol Layers (2)
■  Example: the philosopher-translator-secretary architecture
■  Each protocol at different layers serves a different purpose

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Protocol Layers (3)
■  Each lower layer adds its own header (with control information) to the

message to transmit and removes it on receive

■  Layers may also split and join messages, etc.

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Design Issues for the Layers
■  Each layer solves a particular problem but must include

mechanisms to address a set of recurring design issues

Issue Example mechanisms at different layers
Reliability despite
failures

Codes for error detection/correction
Routing around failures

Network growth
and evolution

Addressing and naming
Protocol layering

Allocation of resources
like bandwidth

Multiple access
Congestion control

Security against various
threats

Confidentiality of messages
Authentication of communicating parties

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Connection-Oriented vs. Connectionless
■  Service provided by a layer may be kinds of either:

–  Connection-oriented, must be set up for ongoing use (and torn
down after use), e.g., phone call

–  Connectionless, messages are handled separately, e.g.,
postal delivery

Connection-Oriented

•  In connection-oriented communication, 2 communication partners (peers A and B)
first establish a logical point-to-point relationship (=connection) with each other.

• After establishing the connection, all traffic injected into either endpoint is
delivered to the other endpoint and peer.

• The network inbetween is often unaware of connections. The routers, switches etc.
in the network forward traffic on a packet-by-packet basis without considering
connections.

Peer A Peer B

Connection
endpoint

Connection
endpoint

Packe
t

Logical connection

Packet Packet

© Peter R. Egli 2015

Connection-Oriented vs. Connectionless

Connection-less:

A connection-less protocol allows a peer A to send messages to different peers (B…
D) without first establishing a logical connection.

Analogy with old-style communication:

1.  Connection-oriented communication can be

compared with good old telephony service.

2.  Connection-less communication resembles
postal correspondence.

Peer A

Peer B

Peer
C

Peer
D

© Peter R. Egli 2015

Connection-Oriented vs. Connectionless

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Service Primitives (1)
■  A service is provided to the layer above as primitives
■  Hypothetical example of service primitives that may provide a reliable

byte stream (connection-oriented) service:

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Service Primitives (2)
■  Hypothetical example of how these primitives may be used for a client-server

interaction

Client Server

LISTEN (0)

ACCEPT
RECEIVE

SEND (4)

DISCONNECT (6)

CONNECT (1)

SEND
RECEIVE

DISCONNECT (5)

Connect request

Accept response
Request for data

Reply
Disconnect

Disconnect

(2)

(3)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Relationship of Services to Protocols
■  Recap:

–  A layer provides a service to the one above [vertical]
–  A layer talks to its peer using a protocol [horizontal]

Unicast, broadcast and multicast define the packet delivery mode, i.e. if packets are
delivered

•  to a single destination (unicast),
•  to a group of destinations (multicast) or
•  to all possible destinations in a network (broadcast)

In anycast routing, the network delivers packets to the topologically nearest destination
to reduce latency and network load.

Unicast Broadcast

Multicast Anycast

© Peter R. Egli 2015

Unicast, Broadcast, Multicast, Anycast

A receiver signals successful reception of a packet (message) by sending back an
acknowledgment packet to the sender.

Acknowledgments may have different meanings such as:

a) Message was successfully received, will be processed by receiver
b) Message contents was accepted, will be processed by receiver
c) Message was successfully received and processed
d) Message was received but some error occurred (negative acknowledgment)

Typically, acknowledgments are used for signaling successful reception so that the sender
protocol layer can free resources such as transmit buffers that are used for retransmissions.

 Sender Receiver

© Peter R. Egli 2015

Acknowledged Data Transfer

Acknowledge (ID=1)

Message (ID=1)

Acknowledge (ID=2)

Message (ID=2)

Handshake is a procedure employed by two peers to synchronize and exchange
 information needed in the subsequent communication.

A handshake is typically a threeway packet exchange initiated by one peer.

1. Peer B accepts the information sent by peer A (Peer-A-ID in the example below)

2. And sends back an acknowledgment along with its own ID (Peer-B-ID)

3. Finally, peer A acknowledges peer B's ID by returning an acknowlegment.

Peer-A-ID = 1

Ack Peer-A-ID,

Peer-B-ID = 2 Ack

Peer-B-ID

Peer A Peer B

© Peter R. Egli 2015

Handshake

Dictated by the application logic, communication partners may have different roles from
which the following communication patterns can be derived.

Client-server (C/S):
In the C/S model, application logic is distributed with a centralized server component
responding to requests from clients (functional asymmetry).

The client is the initiator of a connection / session (typically TCP) to the server which acts
as a hub connecting multiple clients.

Clients do not directly communicate with each other. Example C/S: Browser (C) and web
server (S).

Client
B

Server

Client
A

Client
C

© Peter R. Egli 2015

Client-Server, Peer-to-Peer (1/2)

In the P2P model, all peers have the same functionality and communicate directly
with each other.

Each peer can initiate a connection / session to any other peer. There is no
central component

Therefore this model is resilient against failures of individual peers.

Network and computing load is distributed more evenly compared to
the centralized C/S model.

Example: File sharing platform.

Peer
B

Peer
D

Peer A

Peer
C

© Peter R. Egli 2015

Client-Server, Peer-to-Peer (2/2)

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Reference Models
■  Reference models describe the layers in a network

architecture

–  OSI reference model »
–  TCP/IP reference model »
–  Model used for this text »
–  Critique of OSI and TCP/IP »

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

OSI Reference Model
■  A principled, international standard, seven layer model to connect different

systems

– Provides functions needed by users

– Converts different representations

– Manages task dialogs

– Provides end-to-end delivery

– Sends packets over multiple links

– Sends frames of information

– Sends bits as signals

The OSI Protocol Model

OSI Layers

•  Application: e.g. web browser, email, file transfer

•  Presentation: provides independence to the app. processes from differences in
data representation (syntax)

•  Session: Provides control structure for comm. between applications; establish,
manages, and terminates connections (sessions) between cooperating
applications

•  Transport: end-to-end reliable delivery control

•  Network: routing/switching; establish/maintain/terminate connections

•  Data Link: reliable transfer of information across the physical links; send
frames with necessary synch., error control, and flow control

•  Physical: concern with transmission of unstructured bit stream over physical
medium;

Use of a Relay

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

TCP/IP Reference Model
■  A four layer model derived from experimentation; omits some OSI layers

and uses the IP as the network layer.

IP is the “narrow
waist” of the

Internet

Protocols are shown in their respective layers

TCP/IP Protocol Architecture

•  Developed by the US Defense Advanced Research Project Agency
(DARPA) for its packet switched network (ARPANET)

•  Used by the global Internet

•  No official model but a working one.
➢  Application layer: logic needed to support various user applications

➢  Host to host or transport layer: reliable end-to-end delivery
mechanisms, e.g. TCP

➢  Internet layer: provide routing function across multiple networks

➢  Network access layer: concern the exchange of date between end
system & the network to which it is attached

➢  Physical layer: Physical interface between a data trans. device & a
trans. medium or network

TCP/IP Protocol Architecture Model

PDUs in TCP/IP Architecture

Some Protocols in TCP/IP Suite

OSI v TCP/IP

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Model Used

■  It is based on the TCP/IP model but we call out the
physical layer and look beyond Internet protocols.

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Critique of OSI & TCP/IP
■  OSI:

+  Very influential model with clear concepts
•  Models, protocols and adoption all bogged down by politics

and complexity

■  TCP/IP:
+  Very successful protocols that worked well and thrived
•  Weak model derived after the fact from protocols

Computer Networking

Preliminaries

Transport Layer

Network Layer

Link Layer

Physical Layer Transmission media

Ethernet

Routing

Internet protocol

TCP

UDP

Terminology

Introduction

Aplication Layer, advanced topics (e.g., wirelless, P2P,
Multimedia, security, and management

Other
 Topics

Transport Layer 3-35

Chapter 3
Transport Layer

Computer Networking: A
Top Down Approach
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Transport Layer 3-36

Chapter 3: Transport Layer
■  Our Goals

v Learn about transport layer protocols
in the Internet

•  UDP: connectionless transport
•  TCP: connection-oriented transport

Application

Transport

Network

Link

Physical

Transport

Transport Layer 3-37

Transport services and protocols
■  Transport protocols run in end

systems
–  send side: breaks app

messages into segments,
passes to network layer

–  rcv side: reassembles
segments into messages,
passes to app layer

■  More than one transport
protocol available to apps
–  Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-38

Transport vs. Network layer

■  Network layer
–  Logical communication

between hosts

■  Transport layer
–  Logical communication

between processes
–  Relies on, enhances,

network layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-39

Internet Transport-layer Protocols
■  Reliable, in-order delivery

(TCP)
–  congestion control
–  flow control
–  connection setup

■  Unreliable, unordered
delivery (UDP)
–  no-frills extension of “best-effort” IP

■  Services not available
–  delay guarantees
–  bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Transport Layer
3-40

Chapter 3 outline
3.1 Transport-layer services

3.2 Connectionless Transport: UDP

3.3 Principles of reliable data transfer

3.4 Connection-oriented transport: TCP

3.5 Principles of congestion control

3.6 TCP congestion control

Transport Layer 3-41

UDP: User Datagram Protocol [RFC 768]
■  “No frills,” “bare bones”

Internet transport protocol

■  “Best effort” service, UDP
segments may be:
–  lost
–  delivered out of order to

app

■  Connectionless
–  No handshaking between

UDP sender, receiver
–  Each UDP segment

handled independently of
others

Why is there a UDP?
■  No connection establishment

(which can add delay)

■  Simple: no connection state
at sender, receiver

■  Small segment header

■  No congestion control: UDP
can blast away as fast as
desired

Transport Layer 3-42

UDP: more
■  Often used for

streaming multimedia
apps
–  loss tolerant
–  rate sensitive

■  Other UDP uses
–  DNS
–  SNMP

■  Reliable transfer over
UDP: add reliability at
application layer
–  application-specific error

recovery!

source port # dest port #

32 bits

Application
data
(message)

UDP segment format

length checksum

Length, in
bytes of UDP
segment,
including
header

Transport Layer
3-43

Chapter 3 outline
3.1 Transport-layer services

3.2 Connectionless Transport: UDP

3.3 Principles of reliable data transfer

3.4 Connection-oriented transport: TCP

3.5 Principles of congestion control

3.6 TCP congestion control

Transport Layer 3-44

Principles of Reliable Data Transfer
■  Important in app., transport, link layers

–  top-10 list of important networking topics!

Transport Layer
3-45

Principles of Reliable Data Transfer

■  Characteristics of unreliable channel will determine complexity
of reliable data transfer protocol

■  Important in app., transport, link layers
–  top-10 list of important networking topics!

Transport Layer 3-46

Principles of Reliable Data Transfer

■  Characteristics of unreliable channel will determine complexity
of reliable data transfer protocol (rdt)

■  Important in app., transport, link layers
–  top-10 list of important networking topics!

Transport Layer 3-47

Reliable Data Transfer: Getting Started

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Transport Layer 3-48

Reliable Data Transfer: Getting Started

■  Incrementally develop sender, receiver sides of

Reliable Data Transfer protocol (rdt)

■  Consider only unidirectional data transfer
–  but control info will flow on both directions!

■  Use Finite State Machines (FSM) to specify
sender, receiver

State 1 State 2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely
determined by next

event

event
actions

Transport Layer 3-49

Rdt1.0: Reliable Transfer over a Reliable Channel
■  Underlying channel perfectly reliable

–  no bit errors
–  no loss of packets

■  Separate FSMs for sender, receiver
–  sender sends data into underlying channel
–  receiver read data from underlying channel

Wait for
call from
above packet =make_pkt(data)

udt_send(packet)

rdt_send(data) Extract (packet,data)
deliver_data(data)

Wait for
call from
below

rdt_rcv(packet)

sender receiver

Transport Layer 3-50

Rdt2.0: channel with bit errors

■  Underlying channel may flip bits in packet
–  checksum to detect bit errors

■  The question: how to recover from errors?
–  acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
–  negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
–  sender retransmits pkt on receipt of NAK

■  new mechanisms in rdt2.0 (beyond rdt1.0):
–  error detection
–  receiver feedback: control msgs (ACK,NAK) rcvr->sender

How do humans recover from “errors”
during conversation?

Transport Layer
3-51

Rdt2.0: channel with bit errors

■  Underlying channel may flip bits in packet
–  checksum to detect bit errors

■  The question: how to recover from errors?
–  acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
–  negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
–  sender retransmits pkt on receipt of NAK

■  New mechanisms in rdt2.0 (beyond rdt1.0):
–  error detection
–  receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-52

rdt2.0: FSM specification

Wait for call
from above

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or
NAK Wait for call

from below

Sender

Receiver

rdt_send(data)

Λ

3-53

TCP: Overview
■  Full duplex data:

–  bi-directional data flow in
same connection

–  MSS: maximum segment
size

■  Connection-oriented:
–  handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

■  Flow controlled:
–  sender will not overwhelm

receiver

■  Point-to-point:
–  one sender, one receiver

■  Reliable, in-order byte
steam:
–  no “message boundaries”

■  Pipelined:
–  TCP congestion and flow

control set window size

■  Send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

Transport Layer 3-54

TCP segment structure

source port # dest port #

32 bits

application
data
(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnter checksum
F S R P A U head

len
not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-55

TCP seq. #’s and ACKs
Seq. #’s:

–  byte stream “number” of
first byte in segment’s
data

ACKs:
–  seq # of next byte

expected from other side
–  cumulative ACK

Q: how receiver handles out-of-
order segments

–  A: TCP spec doesn’t say,
- up to implementor

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt
of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time

simple telnet scenario

Transport Layer 3-56

TCP: Retransmission Scenarios

Host A

Seq=100, 20 bytes data

time

premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

Se
q=

92
 ti

m
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time
Se

q=
92

 ti
m

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

SendBase
= 100

Transport Layer 3-57

TCP Retransmission Scenarios (more)
Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

TCP Congestion Control

(a) A fast network feeding a low capacity receiver.
(b) A slow network feeding a high-capacity receiver.

Transport Layer 3-59

TCP Connection Management
Recall: TCP sender, receiver

establish “connection” before
exchanging data segments

■  initialize TCP variables:

–  Initial seq. #s
–  Buffers, flow control info

(e.g. RcvWindow)

■  client: connection initiator
 Socket clientSocket = new

Socket("hostname","port
number");

■  server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP
SYN segment to server
–  specifies initial seq #
–  no data

Step 2: server host receives SYN,
replies with SYNACK segment
–  server allocates buffers
–  specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment,
which may contain data

Transport Layer 3-60

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control
segment to server

Step 2: server receives FIN,
replies with ACK.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim
ed

 w
ai

t

Transport Layer 3-61

TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

–  Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Step 5: after timeout, client ’s
connection closed

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t
closed

3-62

TCP Connection Management (cont)

TCP client
lifecycle

TCP server
lifecycle

TCP Finite State Machine

• TCP connection management Finite
State Machine: 3-Way Handshake

• The heavy solid line is the normal
path for a client.

• The heavy dashed line is the normal
path for a server.

Step 1 of the 3-way
handshake

Step 2 of the 3-way
handshake

Step 3 of the 3-way
handshake

Some Protocols in TCP/IP Suite

Protocoles et Interconnexions

Course Overview and Introduction
Dario Vieira
Department of Computer Science
EFREI

