
Fabien Calcado, Thomas Megel

Email: fabien.calcado@gmail.com
thomas.megel@thalesgroup.com

Introduction to real time
systems

EFREI 2016 - 2017 1 EFREI 2016 - 2017

Presentation outlines

Reminder on fundamentals of Operating systems

Real time concepts

Architecture of real time systems

Scheduling in real time systems
– Scheduling of independent tasks
– Scheduling of dependent tasks on mono and multi

processor systems

2

EFREI 2016 - 2017 3

Course content (n°1)

Reminders
– Background on software development
– Multitask systems

Parallelism management (reminders /supplements)
– Communication and control of concurrency

• Mutex / semaphore

EFREI 2016 - 2017 4

Outlines

BackgroundBackground

Multitask system

Parallelism management

EFREI 2016 - 2017 5

Background

The primary purpose of an information processing
system is to achieve a mission :
– Implementation of functions
– Set of coded instructions (program)
– Coded and organized informations (data)

Design
– Necessity to use hardware resources

• HW => static configuration of resources

– Softwares
• Specific SW

EFREI 2016 - 2017 6

Computer science systems

User

User program

HW resources (computer & peripherals)

Operating System

Hardware

software

Background

EFREI 2016 - 2017 7

Operating System
– Set of programs to execute and to manage « physical

resources » of a computer
• To drive (software-driven) computer elements and to

coordinate exchanges of information
• To execute high level commands from user (direct commands)

or from applications launched by user (indirect commands)
• To secure , it forbids actions form user that could threaten its

integrity

Background

EFREI 2016 - 2017 8

Background

Software quality
– Efficiency

• To execute functions required with corresponding pe rformance
– Reliability

• Correctness, complete and safe
– Testability

• understandable, readable, organized, self-describin g
– Portable

• On different platforms
– Maintainability

• corrections
– Reuse

• For product policy
– Certifiable

• By providing proofs of its correct behavior

EFREI 2016 - 2017 9

Background

It implies:
– A design compliant to the requirements of the missi on
– A implementation compliant to the design

To analyze the specifications:
– With methods and rules
– With basic techniques
– Design/ programming / implementation

EFREI 2016 - 2017 10

Background

Modular approach :
– Allows a reduced complexity of the problem
– Allows to divide the workload

Methods to ensure coherency of this approach:
– Logical coherency

• Categorization of problems, hardware or software

– Temporal coherency
• synchronization, sequencing of instructions (computing)

– Procedural coherency
• Algorithms organization

– Data coherency for common part
• Object oriented

– Functional coherency
• 1 functionality for each module

EFREI 2016 - 2017 11

Background

V-model:

EFREI 2016 - 2017 12

Background

V-model :
– Need analysis

• Experts of usage domain
• Environment, role, resources, requirements

» What do we want? At which cost?

– Global specification (functional)
• Set of requirements
• Description of the system, not related to its imple mentation

» Expected outputs of the system with specific inputs � What it has
to do ?

– Design (detailed architecture)
• Decomposition of software, interface specification, description of the

component design

» How will it do it ?

EFREI 2016 - 2017 13

Background

V-model :
– Programming

• Realization step
» Far to be the most important part

– Unit test
• To ensure the correct behavior of a module

» To be compliant of individual specification

– Integration and test
• To gather all modules to validate the overall system

EFREI 2016 - 2017 14

Background

V-model
– Verification and validation (Software)

• Compliance to the needs, to meet the requirements
• Analysis, tests
• Software errors

» Most errors came from a wrong design
» Most errors are revealed by the customers

• Cost
» The software development represents of a big part of the overall

cost
» ~ 40 à 60% of expenses can be related to tests and correction of

the software!

EFREI 2016 - 2017 15

Background

Examples of catastrophic failures due to bugs
– In 1996, Ariane 5 rocket had exploded during the fl ight

• The Navigation system used was identical than the one used in
Ariane 4 but not tests on Ariane 5…

» 800 000 frs savings on the preparating cost

– In 2000, in medicine, a program to measure radiatio n has
provided wrong values

• It costs the life to 8 patients and ~20 people lightly injured

– In 2009, dozen thousand bank accounts of customer f rom
BNP Paribas have been credited by error

– In 2013, Toyota throttle sw design causes the death to
several dozen of people

EFREI 2016 - 2017 16

Outlines

Background

Multitask systemMultitask system

Parallelism management

EFREI 2016 - 2017 17

Multitask programming

System
– contains :

• Several resources
» CPU(s), memory, hard drives, network cards …

• Each can deliver one function at a time

– To realize :
• several functionalities
• Application = 1 or several tasks (1 or several functions)

» Independent or not
» With different occurrences of release or not entirely defined

�Need to share resources between different tasks
to expose parallelism

EFREI 2016 - 2017 18

Multitask programming

System

– Software architecture
• Set of tasks (programs) to execute concurrently

– Hardware architecture
• Set of restricted computing resources (CPUs) which are

interconnected
» mono/multi processor architecture

» shared or distributed memory architecture

EFREI 2016 - 2017 19

Multitask programming

System implementation
– It consists in allocating tasks on several resources over the

time
• Allocating over the time is called tasks scheduling
• Real time context� scheduling shall satisfy any temporal constraints

of a set of tasks

– Terminology
• The scheduling is the management of the tasks’ execution on the

resources of the system
» sequencing, interleaving…

• The scheduling policy is the rule to organize the execution
of tasks

EFREI 2016 - 2017 20

Multitask programming

Monoprocessor case
– A computer:

• 1 processor, a memory and other peripheral resources

– Execute anything in one task (loop programming)
• Cyclic programming : only one release of task

– Advantages :
• Easy to implement
• Simple verification (deterministic)

– Drawbacks :
• Slow and complex design
• Weak usage of resources
• Weak scalability and reuse

EFREI 2016 - 2017 21

Multitask programming

Multiprocessor case
– A program needs

• One or several virtual processor (process/thread)
• A virtual memory (addressing space)
• Virtual resources

• UNIX process example
» 1 process = 1 « virtual processor »

– To execute several program in parallel
– OS is the program in charge of multi-programming

• Program isolation (partitioning property)
• Resources sharing

EFREI 2016 - 2017 22

Multitask programming

Program isolation
– To prevent unexpected failure of a program

• Isolation of memory access (MMU)
• Resource accesses secured

» System services (kernel)

» Ensure a correct use of resources

• Defensive programming
» Check of deadline miss (via watchdog), interrupts management

– Safety and security ���� similar conception
– Safety ≠ perfect system (too expensive)

EFREI 2016 - 2017 23

Multitask programming

Resources sharing
– « spatial » allocation

• Possible if there are several resources
» CPUs, Memory…

– « temporal » allocation
• Over the time
• Mandatory if there is only one resource

» one CPU, hard drive, one serial port…

�CPU(s) scheduling : manage task execution
on one or several processors of the system

EFREI 2016 - 2017 24

Crucial needs
– Communication between tasks

• Data transfers

– Synchronization of tasks
• Add a constraint to the scheduling and to the instruction

sequencing

Most important properties
– Data coherency
– Execution determinism

• Independently of the task parallelism

Multitask programming

EFREI 2016 - 2017 25

Sources of non-coherence
– Do not come from parallelism…
– … but from interactions between programs executed in

parallel
• Shared memory
• Shared resources
• Communications (sequencing)…

– Example : race condition

Multitask programming

EFREI 2016 - 2017

Interaction model with interfaces
– Polling

• Regularly send requests to peripheral(s)
• Implemented with an infinite loop
• Advantage

» Easy to implement

• Drawbacks
» No scalability if too many instances
» Unavailable data � waste of time requesting it to the driver of a

peripheral

26

Multitask programming

EFREI 2016 - 2017

Interaction model with interfaces
– Interrupt-based interactions

• Event causing a change in the execution of a program
» Need to handle different time scales
» Input / Output interruption, clocks, external signals (watchdog)

• Illustration
» Execution related to E2 with higher priority than E1

27

E1
E2

Ei : Event i

: computing

t

Multitask programming

EFREI 2016 - 2017

Interaction model with interfaces
– Interrupt-based interactions

• Advantages
» Large flexibility
» Easy-medium to implement
» Possible optimization

• Drawbacks
» Data coherency (interleaving)
» Feasibility (miss of important timing constraint)
» Resources sharing (deadlock / livelock problem)

28

Multitask programming

EFREI 2016 - 2017

Interaction model with interfaces
– Interrupt-based interactions

• Can be related to exception (faults, trap, abort)
» Internal causes of a program
» Example : erroneous instruction, access to unimplemented memory

zone, zero division,…
» Be careful of Out of Order processor (OoO)

29

Multitask programming

EFREI 2016 - 2017

Interaction model
– Multitask system case

• Several tasks (programs or sequence of instructions)
• Switching of tasks

» To halt a task (e.g. in waiting) to execute another one
» Interruption (periodic) triggered by a timer (clock)

30

Multitask programming

EFREI 2016 - 2017 31

Loop programming
– To avoid problem related to multi-task paradigm

• Static control flow
• No preemption

Multitask programming

Primary executions

Outputs

Secondary executions

EFREI 2016 - 2017 32

Loop programming
– Advantages

• « easy » to implement
• Cycle accurate

– Drawbacks
• Not flexible
• Not optimal
• Slow

– Example : three tasks A, B, C
• A can be divided in A1 and A2
• C can be divided in C1, C2 and C3

» Dependency problem with respect to processor speed !

Multitask programming

EFREI 2016 - 2017 33

Parallel composition of a program

– Let P 1 et P2 known, what can we say about P ?
– To characterize explicit or implicit interactions

• Asynchronous case: product possible or not
• Synchronous case: synchronous product of automatons

– Loop programming provides a non flexible compositio n but
easy to implement, with low performances

– An interrupt can lead to a « desynchronization »

P = P1 * P2

Multitask programming

EFREI 2016 - 2017 34

Outlines

Background

Multitask system

Parallelism managementParallelism management

EFREI 2016 - 2017 35

Example with bank account update:
val: INTEGER

– Problem if we execute:
• Val = 5, debtor(6), creditor(4)
• Sequence: [1], [4], [2], [3]... Overdraft notified ! (val = 3)

– Problem if we execute :
• Val = 5, debtor(4) in // debtor(3)
• Sequence : [1a], [1b], [3a], [3b] …. No overdraft found ! (val = -2)

Parallelism management

PROCESS Creditor (c: INTEGER){
[4] val � val + c
}

PROCESS Debtor (d: INTEGER){
[1] if val < d then
[2] Write (« overdraft »)

endif
[3] val � val – d
}

EFREI 2016 - 2017 36

Parallelism management

Interactions between programs (reminder)
– Problems in multi-task systems are related to the

interactions between tasks executed in parallel and not
related to parallelism

– Resource sharing
• To ensure that the parallel execution of several tasks leads to the

same outputs than a sequential execution of them

– Communication
• To ensure that a well-defined protocol exists and is strictly
applied to share informations between programs

EFREI 2016 - 2017 37

Why synchronize?
– To solve memory coherency problems for the data

communication (shared memory)
– To specify dependency between task executions

• To control task execution order
» Ex : producer / consumer (ease the control of a thread to another one is

running)

» Ex: peripheral commands / hardware (to ensure we do not send two
contrary orders to the same controller)

– Generally: to solve race conditions on a shared res ource
• Software or hardware

Parallelism management

EFREI 2016 - 2017 38

Communication mechanisms
– Shared memory, FIFO pipes, asynchronous mailbox,

circular buffer…

– A shared memory zone is mandatory to realize a
communication between two tasks

• Can be hidden by the kernel
» Important mechanism to implement

– Be careful of « low level » problems
• A C language instruction = several assembly instructions!

» Example n°1: a variable, two tasks

� the first one adds, the other one subtracts

Parallelism management

EFREI 2016 - 2017 39

Definition : critical section
– Task entering in a code sequence using resources wh ich

can be used by other tasks but not at the same time with
the other ones

• A common example of shared resource is a set of memory blocks

• To ensure a specific part of code is executed in a sequential way

– Be careful with critical sections, they penalizes t he
parallelism rate

• One must try to minimize their use

Parallelism management

EFREI 2016 - 2017 40

Definitions of seriability et atomicity
– A and B are two (computing) tasks
– Seriability

• A // B independent of the scheduling
• A // B = A,B = B,A

– A is atomic for B if
• A cannot be in // with B

• A cannot be preempted in favour of B
• B cannot observe intermediary states of A during its execution

• A takes zero duration in B point of view

Parallelism management

EFREI 2016 - 2017 41

Remarks
– Atomicity periods decrease the parallelism rate

• They shall not imply deadline misses
• They shall be short on multicore processor

– Atomicity avoids some interactions
• Do not solve A,B = B,A
• Example : parallel decomposition of code for Morse application

Parallelism management

EFREI 2016 - 2017 42

Remarks
– Example : to encode Morse code in parallel

• Chain to encode is « SOS »

• « S » = « … » , « O » = « - - - »
• Two threads, one encodes « S » the other one « O »

• Without taking any precautions : « ….-.--. »

• Compliant with atomicity : « ……--- »

• Compliance with order: « …---… »

�Critical section (mutex) solves atomicity but not order
problems

Parallelism management

EFREI 2016 - 2017 43

What to do in front of coherency problems ?
– A and B must be atomic to each other

• Pessimistic synchronization : Prevention (critical section)
» Atomicity : we avoid the problem

• Optimistic synchronization : recovery (timestamps)
» We detect the problem (incoherent data � coherent data)

• Depends on the probability to execute A and B at the same time?
» timestamps: risk not to end

Parallelism management

EFREI 2016 - 2017 44

What to do in front of coherency problems ?
– Recovery:

• Copy the date (timestamp)
• Copy the data
• Compute new data

** Begin atomicity **
• Copy the current date

» Does timestamp has been changed ?

• If unchanged
� to modify data and update the date

** End atomicity **
Else do it again

Parallelism management

EFREI 2016 - 2017 45

A solution for the problem of mutual exclusion meet these
properties:

– Not CPU speed dependent (program durations)

– Two processes (or more) cannot simultaneously enter in critical
section

– When a process is outside its critical section and does not
intend to enter in it, it shall not prevent another one to go in
critical section

– Two processes shall not permanently prevent each other to
enter to a critical section

• deadlock situation

– A process shall always enter in critical section in a duration
bounded in time

• starvation situation

Parallelism management

EFREI 2016 - 2017 46

Semaphore:
– A semaphore is an object on which only 2 atomic

commands are possible
• P(sem) : « sem » semaphore value decreased

» Blocked if the value < 0 (bound)

• V(sem) : « sem » semaphore value increased
» Allow releasing a process blocked by P (pass)

Note : come from dutch words Passeren (to take) , Vrygeven (to
release, to give)

Parallelism management

EFREI 2016 - 2017 47

Mutual exclusion (mutex), a specific semaphore:
– Binary semaphore initialized at 1
– Its role is to protect a critical section (=> race condition)
– Allow the access to different shared variables

• To associate one semaphore of mutual exclusion for each distinct
set of shared variables

Parallelism management

P(mutex1)
…

{critical section n°1}
…
V(mutex1)
…
P(mutex2)
…

{critical section n°2}
…
V(mutex2)

EFREI 2016 - 2017 48

Private semaphore
– When each task is authorized to only use one P or V

primitive
• We said it is a private semaphore (particular case)

– Interpretation
• The process corresponding to the P primitive is waiting for a signal

from the process corresponding to the V primitive

– Property
• If the receiving process is too early, it is blocked
• If the signal is send to early, it is memorized

Parallelism management

EFREI 2016 - 2017 49

Use case of a private semaphore
– A process shall be enabled by another one one (event -

triggered)
• Only one process can execute the P primitive
• Other processes can execute V operation

Process to
enable

Enabling
process 2

Enabling
process 1

Parallelism management

EFREI 2016 - 2017 50

Problem with semaphores
– Two tasks A and B, two semaphores S1 and S2 with

M(S1) = M(S2) = 1
– The sequence is the following

• A : P(S1)
• B : P(S2)
• A : P(S2) /* A is blocked in P */
• B : P(S1) /* B is blocked in P */

– Remark
• It is a general problem

» A is blocked and it is B who can change this situation
» B is blocked and it is A who can change this situation

�The situation cannot evolve

• Deadlock situation is also possible with only one semaphore
(interrupt handler =>TP n°2)

Parallelism management

EFREI 2016 - 2017 51

Solutions
– Recovery

• To cancel one call to P
• can only be achieved if we can go back in task execution
• can only be achieved if we can restore data of the task
• To cancel all operations the task has done
• In practical: task detection, and removal of concerned ones
• Same problem as with timestamps…

– Prevention
• Complex problem but in particular cases, there are simple

solutions
• Expression of requirements

» There is only one task request for the use of all resources needed

Parallelism management

EFREI 2016 - 2017 52

Partially ordered resources
– The task can do successive requests which target

comparable resources
– Successive requests imply an order

– Demonstration
• The task cannot be blocked when using the resource which has the

highest rank
• The condition is not necessary

» A : P(m1) , P(m2) , P(m3)

» B : P(m1) , P(m3) , P(m2)

Parallelism management

EFREI 2016 - 2017 53

Common semaphores:
– Used as resource counter

• Not limited to 0 or 1 contrary to semaphore of mutual exclusion

– Semaphore values
• Initial : corresponds to the maximum capacity
• Current : number of current capacity

– P primitive allows requesting (taking) a resource
• Blocked if no resource is available

– V primitive release a resource
• To notify the resource availability and eventually to release a

waiting process

Parallelism management

EFREI 2016 - 2017 54

Example of a printer pool:
– Initial value of the semaphore (?)
– What are the M user processes (?)
– What the manager is supposed to do (?)

Printer 1 Printer N

User 1 User M

Printer
Manager

Parallelism management

EFREI 2016 - 2017 55

Example of a printer pool:
– Initial value of the semaphore ���� N (number of resources)
– The M user processes request P()
– The manager do V() to release a resource

Parallelism management

Printer 1 Printer N

User 1 User M

Printer
Manager

EFREI 2016 - 2017 56

Producer / Consumer:
– The system exhibits N places to store data

• Producer processes provide data to these places
• Consumer processes use data and release the corresponding

place

– A semaphore is necessary to synchronize both type o f
processes

• To stop a producer if there is no place
• To stop a consumer if there is no data available

Parallelism management

EFREI 2016 - 2017 57

Example with a Read / Write buffer :
– E Process writes data in the buffer
– L Process reads data in the buffer
– Initial value(s) of the semaphore(s) ?

N cells
E Process
…
Write
…

L Process
…
Read
…

Parallelism management

EFREI 2016 - 2017 58

Example with a Read / Write buffer :
– E Process writes data in the buffer
– L Process reads data in the buffer
– Initial values of semaphores ���� Free=N, Occ=0

N cells
E Process
P(Free)
Write
V(Occ)

L Process
P(Occ)
Read
V(Free)

Parallelism management

EFREI 2016 - 2017 59

Example with a Read / Write buffer :
– Use case with several producers and one consumer

• What type of problem happens?

N cells

E1 Process
P(Free)
…
Write
…
V(Occ)

L Process
P(Occ)
…
Read
…
V(Free)

E2 Process
P(Free)
…
Write
…
V(Occ)

Parallelism management

EFREI 2016 - 2017 60

Example with a Read / Write buffer :
– Use case with several producers and one consumer

• �Mutual exclusion problem

N cells

E1 Process
P(Free)
P(mutex)
Write
V(mutex)
V(Occ)

L Process
P(Occ)
Read
V(Free)E2 Process

P(Free)
P(mutex)
Write
V(mutex)
V(Occ)

Parallelism management

EFREI 2016 - 2017 61

Example with a Read / Write buffer :
– Use case with several producers and consumers

• What type of problem happens?

N cells

E1 Process
P(Free)
...
Write

...
V(Free)

L1 Process
P(Occ)

...
Read

...
V(Free)

E2 Process
P(Free)
...
Write

...
V(Occ)

Parallelism management

L2 Process
P(Occ)

...
Read

...
V(Free)

EFREI 2016 - 2017 62

Example with a Read / Write buffer :
– Use case with several producers and consumers

• �Mutual exclusion problems

N cells

E1 Process
P(Free)
P(mutexW)
Write
V(mutexW)
V(Occ)

L1 Process
P(Occ)
P(mutexR)
Read
V(mutexR)
V(Free)

E2 Process
P(Free)
P(mutexW)
Write
V(mutexW)
V(Occ)

Parallelism management

L2 Process
P(Occ)
P(mutexR)
Read
V(mutexR)
V(Free)

