b Introduction to real time
systems

] q-\..
;J‘-."F Fabien Calcado, Thomas Megel

Email: fabien.calcado@gmail.com
thomas.meqgel@thalesgroup.com

EFREI 2016 - 2017

Presentation outlines

: B
“*.<% @ Reminder onfundamentals of Operating systems

.

a & Realtime concepts

@ Architecture of real time systems

i A
;”"‘-'3 @ Scheduling in real time systems
— Scheduling ofindependenttasks

— Scheduling of dependenttasks on mono and multi
processorsystems

EFREI 2016 - 2017 2

Course content (n°l)

_¥ s Reminders
— Background on software development

a — Multitask systems

_____ @ Parallelism management (reminders /supplements)
.'1 -:1. — Communication and control of concurrency
2] * Mutex / semaphore

EFREI 2016 - 2017

Outlines
: o

-
.

Background

a @ Multitask system

) @ Parallelism management
13w
B

EFREI 2016 - 2017 4

Background

\ ® The primary purpose of an information processing
systemis to achieve a mission

: — Implementation of functions
» — Set of coded instructions (program)

— Coded and organized informations (data)

J*-‘S # Design
— Necessity to use hardware resources
« HW => static configuration of resources
— Softwares
« Specific SW

EFREI 2016 - 2017

Background

@ Computer science systems

| User program |

19 software $ \
b | Operating System |
Hardware | HW resources (computer & peripherals) |
EFREI 2016 - 2017 6

Background

* @ Operating System
— Setof programs to execute and to manage « physical
resources » of a computer

» Todrive (software-driven) computer elements and to
coordinate exchanges of information

5 5 » To execute high level commands from user (direct commands)
J._h,s or from applications launched by user (indirect commands)
» Tosecure, it forbids actions form user that could threaten its

integrity

EFREI 2016 - 2017 7

Background

| @ Software quality
— Efficiency
” « To execute functions required with corresponding pe rformance
ﬁ — Reliability
o ¢ Correctness, complete and safe
— Testability
i3 « understandable, readable, organized, self-describin g
J._‘_,s — Portable
¢ On different platforms

— Maintainability

* corrections
— Reuse

« For product policy
— Certifiable

» By providing proofs of its correct behavior

EFREI 2016 - 2017 8

Background

& Itimplies:

— A design compliant to the requirements of the missi on

= — Aimplementation compliantto the design

Jq 1~ @ Toanalyze the specifications:
2l — With methods and rules
— With basic techniques
— Design/programming / implementation

EFREI 2016 - 2017

J

Background

Modular approach:
— Allows a reduced complexity of the problem
— Allows to divide the workload

Methods to ensure coherency of this approach:
— Logicalcoherency
. « Categorization of problems, hardware or software
J o o — Temporalcoherency
by « synchronization, sequencing of instructions (computing)
— Procedural coherency
« Algorithms organization
— Data coherency for common part
« Object oriented
— Functionalcoherency
« 1 functionality for each module
EFREI 2016 - 2017 10

Background

& V-model:
kY W
Cancept af L d
Operations Verlgggtlon s
Prof Validatian
rolect Requirements System
. Definition an Verification
i3 Architecture and \alidation
é—ﬂ.“s Intagration,
' Detailed Test, and Froject
Design Varification Test and
Integration

I plzmesntztion

EN

Time

EFREI 2016 - 2017

Background

@ V-model:
— Need analysis
. « Experts of usage domain
& « Environment, role, resources, requirements
o » What do we want? At which cost?
— Global specification (functional)
i 4 * Set of requirements

é - ,3 « Description of the system, not related to its imple mentation
) » Expected outputs of the system with specific inputs =» What it has
todo?
— Design (detailed architecture)

« Decomposition of software, interface specification, description of th
component design

» How will itdo it ?

EFREI 2016 - 2017 12

Background

* @ V-model:

Background

* @ V-model
- Progra.mr‘.mng i — Verification and validation (Software)
+ Realization step « Compliance to the needs, to meet the requirements
» Farto be the most important part & « Analysis, tests
) — Unit test) - Software errors
B 2 « To ensure the correctbehavior of a module 13N » Most errors came from a wrong design
" b ¥ » To be compliant of individual specification - b =¥ » Most errors are revealed by the customers
— Integration and test Cost
« To gather all modules to validate the overall system » The software development represents of a big part of the overall
cost
» ~40 a 60% of expenses can be related to tests and correction
the software!
EFREI 2016 - 2017 EFREI 2016 - 2017 14
Background Outlines

- @ Examples of catastrophic failures due to bugs

—1In 1996, Ariane 5 rocket had exploded during the fl ight

« The Navigation system used was identical than the one used in
» Ariane 4 but not tests on Ariane 5...

o » 800 000 frs savings on the preparating cost
i 5 — In 2000, in medicine, a programto measureradiatio nhas
é—n.‘ﬁ provided wrong values
« Itcosts the life to 8 patients and ~20 people lightly injured
— In 2009, dozen thousand bank accounts of customer f ro
BNP Paribas have been credited by error
— In 2013, Toyotathrottle sw design causesthe death
severaldozen of people

to

EFREI 2016 - 2017 15

@ Background

& @ Multitask system

¢ Parallelism management

e A
Béy

EFREI 2016 - 2017 16

Multitask programming

@ System

— contains:

* Several resources
» CPU(s), memory, hard drives, network cards ...
« Each can deliver one function at a time

— Torealize:
« several functionalities

« Application = 1 or several tasks (1 or several functions)
» Independent or not
» With different occurrences of release or not entirely defined

=>Need to share_resources between different tasks
to expose parallelism

EFREI 2016 - 2017

Multitask programming

‘21 & System
. — Software architecture
: » Set of tasks (programs) to execute concurrently
PR — Hardware architecture
J‘_,s * Set of restricted computing resources (CPUs) which are
' interconnected

» mono/multi processor architecture
» shared or distributed memory architecture

EFREI 2016 - 2017 18

3

TRy
PR

Multitask programming

@ System implementation

— It consistsin allocating tasks __on severalresources over the
time
« Allocating over the time is called tasks scheduling

« Real time context=» scheduling shall satisfy any temporal constraints
of a set of tasks

— Terminology
« The scheduling isthe management of the tasks’ execution on the
resources of the system
» sequencing, interleaving...
¢ The scheduling policy isthe rule to organize the execution
of tasks

EFREI 2016 - 2017 19

Multitask programming

Monoprocessor case

— A computer:
« 1 processor, a memory and other peripheral resources

ﬁ — Execute anything in one task _ (loop programming)
« Cyclic programming : only one release of task

i3 " — Advantages:
oo - Easy to implement
¢ Simple verification (deterministic)
— Drawbacks :

« Slow and complex design
* Weak usage of resources
« Weak scalability and reuse

EFREI 2016 - 2017 20

Multitask programming

@ Multiprocessor case

— Aprogramneeds
* One or several virtual processor (process/thread)

« Avirtual memory (addressing space)
o « Virtual resources
9 « UNIX process example
o i e » 1 process = 1 « virtual processor »
S

— Toexecute several programin parallel

— OSis the programin charge of multi-programming
¢ Programisolation (partitioning property)
» Resources sharing

EFREI 2016 - 2017

Multitask programming

L ® Program isolation
— Topreventunexpected failure of a program
i « Isolation of memory access (MMU)
& » Resource accesses secured
» System services (kernel)
» Ensure a correct use of resources

J r) Th= Defensive programming
—"-"3 » Check of deadline miss (via watchdog), interrupts management

— Safety and security =» similar conception
— Safety # perfect system (too expensive)

EFREI 2016 - 2017 22

Multitask programming

@ Resourcessharing
— « spatial » allocation

& « Possible if there are several resources
™ » CPUs, Memory...

~ = «temporal» allocation

ia * Over the time

’ —"-‘3 « Mandatory if there is only one resource

» one CPU, hard drive, one serial port...

= CPU(s) scheduling : manage task execution
on one or several processors of the system

EFREI 2016 - 2017

Multitask programming

Crucial needs
— Communication between tasks
« Data transfers

) — Synchronization oftasks
b « Add a constraint to the scheduling and to the instruction

sequencing

J:‘s # Mostimportant properties
' — Data coherency
— Execution determinism
« Independently of the task parallelism

EFREI 2016 - 2017 24

Multitask programming

. @ Sources of non-coherence

— Do notcome from parallelism...

— ... but from interactions between programs executed in

parallel
« Shared memory

 Shared resources
» Communications (sequencing)...

— Example : race condition

EFREI 2016 - 2017

Multitask programming

: # Interaction modelwith interfaces
— Polling
» Regularly send requests to peripheral(s)
« Implemented with an infinite loop

« Advantage
iat » Easy to implement
J‘_,s + Drawbacks

» No scalability if too many instances

» Unavailable data = waste of time requesting it to the driver of a
peripheral

T~

EFREI 2016 - 2017 26

Multitask programming

* # Interaction modelwith interfaces

— Interrupt-based interactions
« Event causing a change in the execution of a program
» Need to handle different time scales
» Input / Output interruption, clocks, external signals (watchdog)
« lllustration
» Execution related to E2 with higher priority than E1

El Ei: Event i

[1: computing

E2

t

EFREI 2016 - 2017 27

Multitask programming

" @ Interaction modelwith interfaces

— Interrupt-based interactions
« Advantages
> » Large flexibility
— » Easy-medium to implement
» Possible optimization

J_ ‘5 » Drawbacks
] » Data coherency (interleaving)

» Feasibility (miss of important timing constraint)
» Resources sharing (deadlock / livelock problem)

EFREI 2016 - 2017 28

Multitask programming

" @ Interaction model with interfaces

. — Interrupt-based interactions
% « Can be related to exception (faults, trap, abort)
= » Internal causes of a program
» Example : erroneous instruction, access to unimplemented memory

13 . zone, zero division,...
. ,‘__,3 » Be careful of Out of Order processor (O00)
EFREI 2016 - 2017 29

Multitask programming

* @ Interaction model

. — Multitask system case
ﬁ « Several tasks (programs or sequence of instructions)
= « Switching of tasks
) » To halt a task (e.g. in waiting) to execute another one
J e 4 » Interruption (periodic) triggered by a timer (clock)

EFREI 2016 - 2017 30

Multitask programming

| @ Loop programming

— Toavoid problemrelated to multi-task paradigm
« Static control flow
« No preemption

é‘*‘s [Primary executions]

Outputs

[Secondary executions |

]

EFREI 2016 - 2017

Multitask programming

® Loop programming
) — Advantages
* «easy »to implement

ﬁ « Cycleaccurate
<4 — Drawbacks

* Not flexible
173 + Not optimal
é“,s « Slow

— Example : threetasks A, B, C
» Acan be divided in Al and A2
* Ccan be divided in C1, C2 and C3
» Dependency problem with respect to processor speed !

EFREI 2016 - 2017 32

Multitask programming

| Parallel composition of a program

o P = Pl* Pz
& — LetP, et P,known, what can we say aboutP ?

— Tocharacterize explicitor implicit interactions
1w ¢ Asynchronous case: product possible or not
J:-.‘S « Synchronous case: synchronous product of automatons
— Loop programming provides a non flexible compositio
easy to implement, with low performances

— An interruptcan lead to a « desynchronization »

nbut

EFREI 2016 - 2017 33

Outlines

@ Background

& ® Multitask system

) @ Parallelism management
13N
il

EFREI 2016 - 2017 34

Parallelism management

@ Example with bank account update:

val: INTEGER
: PROCESS Creditor (c: INTEGER){ PROCESS Debtor (d: INTEGER){
Wi [4] val € val +c¢ [1]if val < d then
= [2] Werite (« overdraft »)
§ endif
3% [3]val € val —d
Be)

— Problemif we execute:
« Val = 5, debtor(6), creditor(4)
« Sequence: [1],[4], [2], [3]... Overdraft notified ! (val = 3)
— Problemif we execute :
e Val =5, debtor(4) in // debtor(3)
« Sequence : [1a], [1b], [3a], [3b] No overdraft found ! (val = -2)
EFREI 2016 - 2017 35

Parallelism management

: ® Interactions between programs (reminder)

— Problems in multi-task systems are related to the
& interactions betweentasks _executedin parallel and not

related to parallelism

ia — Resource sharing

o e » To ensure that the parallel execution of several tasks leads to the
S same outputs than a sequential execution of them

— Communication

« To ensure that a well-defined protocol exists and is strictly
applied to share informations between programs

EFREI 2016 - 2017 36

Parallelism management

\ ® Whysynchronize?
— Tosolve memory coherency problems for the data
; communication (shared memory)
a — To specify dependency between task executions
T « To control task execution order
» Ex : producer / consumer (ease the control of a thread to another one is

3 running)
o .,3 » Ex: peripheral commands / hardware (to ensure we do not send two
' contrary orders to the same controller)

— Generally: to solve race conditions on a sharedres ource,
« Software or hardware

EFREI 2016 - 2017 37

Parallelism management

| ® Communication mechanisms
— Shared memory, FIFO pipes, asynchronous mailbox,

a circular buffer...

— A shared memory zone is mandatory to realize a
T communication between two tasks
; &' « Can be hidden by the kernel
'_"'-‘3 » Important mechanism to implement
— Be careful of « low level » problems
¢ A Clanguage instruction = several assembly instructions!
» Example n°l: a variable, two tasks
= the first one adds, the other one subtracts

EFREI 2016 - 2017 38

Parallelism management

* @ Definition : critical section

) — Taskenteringin a code sequence using resources wh ich
can be used by other tasks but not at the same time with
a the otherones
« A common example of shared resource is a set of memory blocks
1%

é - ‘3 « To ensure a specific part of code is executed in a sequential way

— Be carefulwith critical sections, they penalizest he
parallelismrate
¢ One must try to minimize their use

EFREI 2016 - 2017 39

Parallelism management

Definitions of seriability et atomicity
— A and B are two (computing) tasks
— Seriability
« A/l Bindependent of the scheduling
« AlIB=AB=BA
%% - Ais atomic for B if
__,.__13 « Acannot be in // with B
¢ Acannot be preempted in favour of B
« Bcannot observe intermediary states of A during its execution
« Atakes zero duration in B point of view

EFREI 2016 - 2017 40

Parallelism management

% @ Remarks
— Atomicity periods decrease the parallelism rate
« They shall not imply deadline misses
« They shall be short on multicore processor
— Atomicity avoids some interactions
e * Do not solve A,B=B,A
J‘-‘s « Example : parallel decomposition of code for Morse application

EFREI 2016 - 2017 41

T~

Parallelism management

Remarks

— Example : to encode Morse code in parallel
 Chainto encode is « SOS »

e «S»=«,..», «O»=«=--=-»

* Two threads, one encodes « S » the other one « O »

J .1 ‘5 « Without taking any precautions : «-.==. »
e « Compliant with atomicity : « -
¢ Compliance with order: « ...---... »

=> Critical section (mutex) solves atomicity but not order
problems

EFREI 2016 - 2017 42

Parallelism management

B # Whatto doin front of coherency problems ?

) — Aand B must be atomic to each other
« Pessimistic synchronization : Prevention (critical section)
@ » Atomicity : we avoid the problem
* Optimistic synchronization : recovery (timestamps)
'i 3 » We detect the problem (incoherent data = coherent data)
g_ 3 1T « Depends on the probability to execute A and B at the same time?
""‘s » timestamps: risk not to end

EFREI 2016 - 2017 43

Parallelism management

%% ® Whatto doin front of coherency problems ?
) — Recovery:
ﬁ « Copy the date (timestamp)
25 « Copy the data
« Compute new data
i3 ** Begin atomicity **
J-‘_,s « Copy the current date
» Does timestamp has been changed ?
« Ifunchanged
=> to modify data and update the date
** End atomicity **
Else do it again

EFREI 2016 - 2017 44

Parallelism management

@ Asolution for the problem of mutual exclusion meet these
properties:
— NotCPU speed dependent _(program durations)
— Two processes (or more) cannot simultaneously enter in critical
section

. i — When a process s outside its critical section and does not
193 & _' intend to enter in it, it shall not prevent anotherone to go in
. ,3 critical section

— Two processes shall not permanently prevent __each other to
enterto a critical section

¢ deadlock situation

— A process shall always enter in critical section in a duration
bounded in time
« starvation situation

EFREI 2016 - 2017 45

Parallelism management

“ @ Semaphore:
— A semaphore is an object on which only 2 atomic

a commands are possible

s * P(sem) : « sem » semaphore value decreased
. i » Blocked if the value <0 (bound)

] 0 o * V(sem) : « sem » semaphore value increased
J-—"-—"S » Allow releasing a process blocked by P (pass)

Note : come from dutch words Passeren (to take) , Vrygeven (to
release, to give)

EFREI 2016 - 2017 46

Parallelism management

Mutual exclusion (mutex), a specific semaphore:
— Binary semaphore initialized at 1
— Its role is to protecta critical section (=> race condition)
— Allow the access to different shared variables

« To associate one semaphore of mutual exclusion for each distinct
set of shared variables

imw P(mutex1)
-—"-"3 {critical section n°1}
mler] mulex o INUTUTVRUA) V(mutexl)

P(mutex2)
{critical section n%2}

V&mutexZ)
EFREI 2016 - 2017 47

Parallelism management

 ® Private semaphore
— When eachtask is authorized to only use one P or V

primitive
"2 * Wesaid it is a private semaphore (particular case)

— Interpretation
A I » The process corresponding to the P primitive is waiting for a signal
é_*_,s from the process corresponding to the V primitive

— Property

« Ifthe receiving process is too early, it is blocked
« Ifthe signal is send to early, it is memorized

EFREI 2016 - 2017 48

Parallelism management

® Use case of a private semaphore
— A process shall be enabled by another one one (event -

; triggered)
ﬁ « Only one process can execute the P primitive

« Other processes can execute V operation

1%
J‘_vs Enabling Enabling Processto
process 1 process 2 enable

V(sp) .\';(.Sp)

P(sp)

EFREI 2016 - 2017

Parallelism management

Problem with semaphores

— Twotasks A and B, two semaphores S1 and S2 with
M(S1)=M(S2)=1

- — The sequence is the following
= « B:P(S2)

; * A:P(S2) /* Aisblocked in P */
13 « B:P(S1) /* B is blocked in P */
ks¥ - Remark
« Itis ageneral problem
» Ais blocked and it is B who can change this situation
» Bis blocked and it is A who can change this situation
=> The situation cannot evolve

» Deadlock situation is also possible with only one semaphore
(interrupt handler =>TP n?2)

EFREI 2016 - 2017 50

Parallelism management

Solutions
— Recovery
» To cancel one call to P
« canonly be achieved if we can go back in task execution
« canonly be achieved if we can restore data of the task
« To cancel all operations the task has done

i3 * In practical: task detection, and removal of concerned ones
J-‘_,s « Same problem as with timestamps...
— Prevention
¢ Complex problem but in particular cases, there are simple
solutions

» Expression of requirements
» There is only one task request for the use of all resources needed

EFREI 2016 - 2017 51

Parallelism management

% @ Partially ordered resources
— Thetask can do successive requests which target

ﬁ comparable resources
4 — Successiverequestsimplyan order

I"'i ""'-_ . — Demonstration
;.1«-*5 « The task cannot be blocked when using the resource which has the
highest rank

« The condition is not necessary
» A: P(ml) , P(m2) , P(m3)
» B:P(ml) , P(m3) , P(m2)

EFREI 2016 - 2017 52

Parallelism management

® Common semaphores:

L3

— Used as resource counter
« Not limited to O or 1 contrary to semaphore of mutual exclusion
— Semaphore values
« Initial : corresponds to the maximum capacity
¢ Current: number of current capacity
— P primitive allows requesting (taking) a resource
« Blocked if no resource is available
— V primitive release a resource

« To notify the resource availability and eventually to release a
waiting process

EFREI 2016 - 2017 53

Parallelism management

@ Example of a printer pool:
— Initial value of the semaphore (?)
— What are the M user processes (?)
— What the manager is supposedto do (?)

73 Printer 1 Printer N
JA—."S I I |
1
Printer
Manager
S
[|
| User 1 | | User M |
EFREI 2016 - 2017 54

i3

FER

Parallelism management

@ Example of a printer pool:

— Initial value of the semaphore =» N (number of resources)
— The M user processes requestP()
— The manager do V() to release a resource

Printer 1 Printer N

I_"III"J

Printer
Manager

L

EFREI 2016 - 2017

Parallelism management

@ Producer/Consumer:
. — The system exhibits N placesto store data
& « Producer processes provide data to these places
= « Consumer processes use data and release the corresponding

) place
e
é_,;__;; — A semaphoreis necessary to synchronize both type o f
processes

« To stop a producer if there is no place
 To stop a consumer if there is no data available

EFREI 2016 - 2017 56

Parallelism management

* ® Example with a Read / Write buffer :
— E Process writes data in the buffer

% — L Processreads datain the buffer

— Initial value(s) of the semaphore(s) ?

— N cells
‘S E Process N L Process
- ~ —
Write —_—] | - —> Read
EFREI 2016 - 2017 57

Parallelism management

* @ Example with a Read / Write buffer :
— E Process writes data in the buffer

% — L Processreads datain the buffer
- — Initial values of semaphores =» Free=N, Occ=0

S N cells
E Process A - L Process
P(Free) P(Occ)
Write —> [—> Read
V(Occ) V(Free)
EFREI 2016 - 2017 58

Parallelism management

Example with a Read / Write buffer:
— Use case with several producers and one consumer

a « Whattype of problem happens?
=% E1Process

) P(Free)

i%w . N cells L Process

J‘-. ¥ \./.\{rlte \ _) . P(Occ)
V(©Occ) ™ || —> .Fi-ead

E2 Process

P(Free) viFree)
Write
ViOcc)

EFREI 2016 - 2017 59

Parallelism management

Example with a Read / Write buffer :
— Use case with several producers and one consumer

a ¢ = Mutual exclusion problem
=% E1Process

) P(Free)
i P(mutex) N cells
J‘-..vﬁ W(ﬂﬁﬁtex) o . L Process
P(Occ)
V(Oce) | | —> Read
V(Free)

E2 Process
P(Free)
P(mutex)
Write
V(mutex)
V(Occ)

EFREI 2016 - 2017 60

Parallelism management

. ® Example with a Read / Write buffer :

— Use case with several producers and consumers

a * Whattype of problem happens?
=% E1Process

P(Free)

17 N cell
1o wiite cells
,_1.4.-3 ~

L1 Process

\

V'('I':ree)

> L2Process

E2 Process —

P(Free)
Write
V'("Occ)
EFREI 2016 - 2017

P(Occ)
Read

V-(.I.:ree)

P(Occ)

Read

V'('I':ree)
61

Parallelism management

. ® Example with a Read / Write buffer :

— Use case with several producers and consumers

ﬂ * = Mutual exclusion problems
=% E1Process

) P(Free)
3 q‘. / \Ijémgtexv\/) N cells
S]

L1 Process

V(mutexw)

V(Occ)

> L2Process

E2 Process —

P(Free)
P(mutexw)
Write
V(mutexw)
V(Occ)
EFREI 2016 - 2017

P(Occ)
P(mutexR)
Read
V(mutexR)
V(Free)

P(Occ)
P(mutexR)
Read
V(mutexR)
V(Free)
62

