
TP 2

Real-time systems

The purpose of this practical work is about the POSIX API that allows to
create real time tasks, by implementing many common situations.

Write your report during the session (pdf only) and, for each coding question,
make a different file named tp2 #.c (with # the question number).

1 Introduction

First, you have to create a function that simulate computation during a lapse
of time.

Question 1. Write a function void do work(unsigned int duration) that
occupies the processor during duration milliseconds. You will need the UNIX
command time. Quantify the inaccuracy of measurement.

Indications :

• Calibrate this function with your processor speed simply (Do not waste
time to automate this). The UNIX command time can be usefull, but
becarefull to the start time of the program !

• Use the same optimization options for all TP because the execution speed
of your function depends on it. It’s best to compile without optimization
here. If you compile with some optimization options, it’s possible that the
compiler removes some instructions of your code (your loop in this case).
In all cases, use asm volatile ("nop") inside your loop to be sure that
the compiler considers it usefull.

2 Sporadic tasks

A sporadic task performs a job in response to a event. These events are of-
ten hardware interrupts, but here we will simulate this environment by using
software interrupts (UNIX signals).

Question 2. Write a program that diplays a message when the SIGUSR1 signal
is sent.

The necessary functions to implement this are signal, pause, and eventually
getpid. Reminder, the UNIX command kill allows to send any UNIX signal.

1

Question 3. Use the function do work() to perform a longer job in the handler
signal. Then, sends a burst of interrupts to the process. What do you notice ?
What is the condition on the events sent that would avoid this problem ?

Question 4. Propose and implement a mechanism to improve the processing
in the case of a burst interrupts. Is that the problem is completely resolved ?

Question 5. Propose and implement a new mechanism to verify that the pre-
vious interrupt ha been processed when it receives the next.

3 Periodic tasks

3.1 Introduction

The previous tasks work on the arrival of a event (event-triggered). In this
section, the focus is on tasks that creates jobs at a time (time-triggered).

A periodic task is some type of time-triggered task, for which a job is created
at regular intervals called task period.

Question 6. Implement, in two ways, a periodic task with a period equal to
1s. The task executes a work during 500ms (use the function do work(). One
program using the function sleep() and an other one by using the function
alarm(). What are the problems of these methods ?

These limitations have led POSIX to get extensions for managing timers.

Question 7. Write a program that creates a periodic task using the functions
timer create and timer settime. Don’t forget the flag -lrt for the compila-
tion.

2

3.2 Loop programming

Given a set of periodic tasks, T2, T3, T4, defined by the following parameters :

• T2 executes a t2() function with an execution time of 0.333s and a 2s
period;

• T3 executes a t3() function with an execution time of 1s and a 3s period;

• T4 executes a t4() function with an execution time of 2s and a 4s period.

Question 8. Write a program that creates these tasks in a loop programming
approach (i.e. one large periodic task). See Course 1 (slide 31/32) and Course
3 (slide 17).

Notes :

• Cutting treatments of t2(), t3(), t4() in pieces of arbitrary duration is
allowed, but try to minimize the number of divisions.

• In the case of a real program, it is difficult to cut a program (or functions)
into pieces with a certain duration. This is what makes the major difficulty
of applying the method.

Question 9. Assume that the processor is replaced by a processor two times
faster (all the duration of treatments are reduced by 50%. Is your program still
working properly ? If not, propose a new one that works independantly of the
processor speed execution.

Question 10. Are we in the case of a deterministic execution ?

3

3.3 Preemptive programming

Question 11. Write a program that executes the three previous periodic tasks,
preemptively (with simply fork()).

EDF scheduling

Question 12. Show that the three previous tasks run always properly with the
EDF algorithm (Earliest Deadline First). It is difficult to implement schedulers
in space user (linux), in particular EDF.

Fixed priority scheduling

Ordonnancement à priorité fixe The fixed-priority scheduling run as fol-
lows:

• At any time, executes the task with the highest priority

• if a new task is ready, with an higest priority than the current task, pre-
empt the current task and execute the new task instead.

Question 13. Can we find a distribution of priorities between the tasks T2, T3,
T4, such as the system becomes schedulable ? And with a faster processor ?

Question 14. Write a program with these three tasks (with the priorities that
you found)

The C functions for changing a priority of a UNIX process are sched setparam

et setpriority

4

