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Introduction to Petri nets



A two-product system

4

• Two types P1 and P2 of products are produced.

• The production of each product requires two operations. 

• The first operation is performed by a shared machine.

• The second operation is performed by a dedicated machine.

• There is at most one product of each type loaded in the 

system at any time.

• When a product finishes, a new product of the same type is 

dispatched.

To be modelled using an usual process-resource 

modelling approach.



A two-product system

Process modeling

5

Goal: model the manufacturing process of each product, i.e. all possible 

states of a product including waiting

• Identify all relevant operations and their precedence constraints.

• Identify all possible waits for shared resources.
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A two-product system

Process modelling
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• Goal: model the manufacturing process of each product.

• Include eventual constraints related to production control.
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A two-product system

Resource modelling

7

• Goal: modelling resource contraint + eventual priority constraints 
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Places and transitions

• A PETRI NET is a bipartite graph 

which consists of two types of 

nodes: places and transitions 

connected by directed arcs.

• Place = circle, transition = bar or 

box.

• An arc connects a place to a 

transition or a transition to a place.

• No arcs between nodes of the same 

type.

• Input and output places of a 

transition

• Input and output transitions of a 

place
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Token and marking

system state

Each place contains a number of tokens. 

The distribution of tokens in the Petri net is 

called the marking.

Representations of a marking:

• a vector M = (m1, m2, …, mn) where mi = nb

of tokens in place pi

• a multi-set such as M = p1 2p3

The marking of an PN = state of the 

corresponding system. 

The initial state of the system = the initial 

marking, denoted as M0.

Example: M = ( ???) = ??? 9
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System dynamics by transition firing

• A transition is said enabled (firable) if each of its input 

places contains at least one token. An enabled transition can 

fire.

• Firing a transition removes a token from each input place 

and add one token to each ouput place.

• Firing a transition leads to a new marking that enables other 

transitions.

• The dynamic behavior of the corresponding system = 

evolution of the marking and transition firings

• Convention: simultaneous transition firings are forbidden.
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Sequence of transitions

A sequence of transitions that can be fired consecutively starting 

from the initial marking is said enabled or firable.

The sequence of firable transitions is not unique.

The set of all firable sequences of transitions = PN language

Example: sequence t1t2t1t3

12
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Formal definitions
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Petri Nets

A Petri net is a five-tuple PN = (P, T, A, W, M0) where:

P = { p1, p2, ..., pn} is a finite set of places

T = { t1, t2, ..., tm } is a finite set of transitions

A  (P×T)  (T×P) is a set of arcs

W : A → { 1, 2, ... } is a weight function

M0 : P → { 0, 1, 2, ... } is the initial marking

P  T =  and P  T = 

PN without the initial marking is denoted by N:

N = (P, T, A, W)

PN = (N, M0)

A Petri net is said ordinary if w(a) = 1, a A.
14



Graphic representation

Similar to that of ordinary PN but with default weight of 1 when 

not explicitly represented.

15
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Transition firing

Rule 1: A transition t is enabled at a marking M if M (p) ≥ w(p, t) 

for any p  ot where ot is the set of input places of t

Rule 2: An enabled transition may or may not fire.

Rule 3: Firing transition t results in:

• removing w(p, t) tokens from each p  ot

• adding w(t, p) tokens to each p  to where to is the set of 

output places of t

M(t> M' denotes firing t at marking M with

  

M' p  

M p , si  (p, t) A  et  ( t,p)A,

M p  W t,p , si  (p, t) A  et  ( t,p)A,

M p   W p,t , si  (p, t) A  et  ( t,p)A,

M p   W t,p   W p,t , si  (p, t) A  et  ( t,p)A,















Transition firing
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Basic concepts

Source transition: transition without input places, i.e. ot = .

Sink transition: transition without output places, i.e. to = .

Source place: place without input transitions, i.e. op = .

Sink place: place without output transitions, i.e. po = .

Self-loop: a couple (p, t) such that t is both input and output 

transition of p

Path: a sequence of nodes s1s2…sn such that si+1 is an output 

node of si.

Circuit: a path such that sn = s1.

Online illustration



Incidence matrices

Pre incidence matrix:

Post incidence matrix:

Incidence matrix : C = Post – Pre.

• C(., t) = Token flow balance after firing t

• Pre and Post define the Petri net

• For Petri nets without self-loops, i.e. ot to = , C defines the Petri net with 

Pre(p,t) = max{0, C(p,t)} and Post(p,t) = max{0, C(p,t)} 

 
 , , if

Pre ,  
0, otherwise

w p t p t
p t

 
 


 
 , , if

Post ,  
0, otherwise

w t p p t
p t

 
 




Incidence matrices

Example:

Pre = ???, Post = ???, C = ???
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Incidence matrices

Enabled transition: A transition t is enabled at a marking M if

M ≥ Pre(●, t)

Transition firing: Firing a transition t at marking M leads to

M’ = M + C(●, t)

Sequence of transitions: Firing a sequence s = t1t2…tn of 

transition starting from marking M leads to:

where   is the counting vector of the sequence s. (proof) Equation 

(1) is also called « state equation ». 

Question: can this equation be used to checked the feasibility of 

a sequence and the reachability of a marking?

' (1)M M Cs 

s



Incidence matrices

Example:

Markings after s = t1t5t2t3t5
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Petri net models of manufacturing 

systems



PN models of key characteristics

Precedence relation: 

24

 
start Activity1 Activity2 End 

 Alternattive  

process  Start End 
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Parallel processes: 
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PN models of key characteristics

Buffer of finite capacity (4): 
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FIFO system: 
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PN models of key characteristics
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Shared resources: 

 Process with 
Resource 

Waiting for 
Resource  

Other  
Activities  

r 

p1 

p2 



PN models of key characteristics
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Dedicated machine: 

 
 

Shared machine: 



PN models of key characteristics
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Assembly operation: Unreliable machines: 
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A robotic cell

29
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A two-product system

30

• Two types P1 and P2 of products are produced.

• The production of each product requires two operations. 

• The first operation is performed by a shared machine.

• The second operation is performed by a dedicated machine.

• There is at most one product of each type loaded in the 

system at any time.

• When a product finishes, a new product of the same type is 

dispatched.

To be modelled using an usual process-resource 

modelling approach.



Process modeling

31

• Goal: model the manufacturing process of each product.

• Identify all relevant operations and their precedence constraints.

• Identify all possible waits for shared resources.
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Process modelling
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• Goal: model the manufacturing process of each product.

• Include eventual constraints related to production control.
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Resource modelling

33

• Goal: modelling resource contraint.
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Elementary classes of Petri nets
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Pure Petri nets

Definition: A Petri net free of self loop is said pure, i.e. ot to

= .

Theorem : All impure Petri nets can be transformed into pure Petri nets.

35
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Ordinary Petri nets

STATE MACHINES

Each transition has exactly one input place and one output place.

Property: The total number of token is constant.

EVENT GRAPHS (OR MARKED GRAPHS)

Each place has exactly one input and one output transition.

Property: The total number of tokens in each elementary circuit is

constant

36
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Ordinary Petri nets

FREE-CHOICE NETS

card(p°) > 1  °(p°) = {p},  p  P.

Property : For any free-choice net, a t'

in conflict with an enalbed transition  t , 

i.e. •t'  •t ≠ , is also enabled.

EXTENDED FREE-CHOICE NETS

p1°p2° ≠  p1° = p2°, p1, p2  P

An extended free-choice net can always 

be transformed into a free-choice net.

37

 

 



Ordinary Petri nets

ASYMMETRIC CHOICE NETS

p1°p2° ≠  p1°  p2° or  p2°  p1° ,  p1, p2  P

Theorem : For any asymmetric choice net, the set {p1, p2, …, pk} of 

input places of any transition can be renumbered such that p1°  p2°  … 

 pk°.
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Relations between different classes
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SM EG 

FC 

EFC AC Ord. 

PN  

PN 

PN = Petri Net

AC = Assymmetric choice

EFC = Extended Free Choice

FC = Free Choice

SM = State Machine

EG = Event Graph
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Properties of PN models
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Reachability

A marking M is said reachable from another marking M’ if there exists a 

seqence s of transitions such that M’(s>M. 

R(M0) = set of markings reachable from the initial marking M0.

Reachability is important for verification of the reachability of some

desired (proper termination) or undesired markings (deadlock). 

Example: R(M0) = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} and 

(1, 0, 1, 0) not reachable.
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Reachability

Theorem1 (monotonicity) : Any sequence s of transitions firable starting 

from a marking M0 is also firable starting from M0’ such that M0' ≥ M0.

Theorem2 (necessary condition) : The equation system CY = M - M0

with Y ≥ 0 has a solution for all reachable marking M.

Theorem3 (Acyclic PN) : For any PN free of cycles, a marking M is 

reachable iff the equation system C Y = M - M0 with Y ≥ 0 has a solution.

Ex: Find a PN and a marking that is not reachable but for which condition 

of Theorem 2 holds.
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Boundedness

A place p is said k-bounded if the number of tokens in p never exceed k, 

i.e. M(p) ≤ k, M Œ R(M0).

A Petri net is said k-bounded if all places are k-bounded, i.e. M(p) ≤ k, 

p and M Œ R(M0). 

A Petri net is said bounded if it is k-bounded for some k > 0. 

A Petri net is said safe if it is 1-bounded, M(p) ≤ 1, p and M Œ R(M0).

Boundedness is often needed for a well-designed system as, without this 

property, goods could accumulated without limit, which is often a design 

error.
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Boundedness
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Boundedness

Theorem (monotonicity) : If (N, M0) is bounded, then (N, M0’) such that

M0' ≤ M0  is bounded.

Theorem (necessary condition) : A Petri net (N, M0) is k-bounded if 

M(p) ≤ k, p and M such that M = M0 + CY for some Y ≥ 0.
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Liveness

A transition t is said live if it can always be made enabled starting from

any reachable marking, i.e. M Œ R(M0),  M' Œ R(M) such that M‘(t>.

A Petri net is said live if all transitions are live.

A transition is said quasi live if it can be fired at least once, i.e. M Œ

R(M0) such that M(t>.

A Petri net is said quasi live if all transitions are quasi live.

A marking M is said a deadlock or dead marking if no transition is

enabled at M.

A Petri net is said deadlock-free if it does not contain any deadlock.
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Liveness

• Liveness implies the absence of total or partial deadlock and is

often required for well-designed systems. But the reverse is not true.

• Deadlock often results from resource sharing and synchronization of 

parallel processes.

• No monotonicity of liveness as the Petri net below is not live if 

M0(R1) = 0, live if M0(R1) = 1, and not live if M0(R1) = 2.

47
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Reversibility

A Petri net (N, M0) is said reversible if the initial marking remains

reachable from any reachable marking, i.e. M0 Œ R(M), M Œ R(M0)

A marking M* is said a home state if it is reachable from all reachable

markings, i.e. M* Œ R(M), M Œ R(M0) .

Existence of the reversibility ensures that the system can always recover

the normal behavior and is important for systems subject to failures.

Existence of home state is important for systems requiring proper

termination.

Reversiblity implies existence of home states but the reverse is not true. 
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Reversibility
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Analysis methods
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Reachability tree

Definition:  The reachability tree, also called marking graph, of a Petri

net (N, M0) is a graph in which

• nodes corresponds to reachable markings

• arcs correpond to feasible transitions.

Remark: the reachability tree of an unbounded PN is unlimited.
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Coverability tree

Symbol "w" implying « as great as possible » with the following properties:

w > n, w ± n = w, for all integer n and w ≥ w.
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Coverability tree

Algorithm of coverability tree

1. Initiate the tree by a root node labeled M0 and marked as "new".

2. While there exists "new" nodes : 

2.1. Select a "new" node A. Let M be its marking.

2.2. If there exists a node B with marking M on the path from the root to A, 

then mark A as "old" and go to 2.

2.3. If M is a dead marking, then mark A"dead-end" and go to 2.

2.4. Otherwise, for each transition t enabled at M,

2.4.1. Add a node C, an arc from A to C with label t, mark C "new".

2.4.2. Determine the marking M’ of node C.

2.4.3. If, on the path from the root to node C, there exists a node D with

marking M" such that M' ≥ M" & M'(p) > M"(p) for some p, then

M'(p) = w for all p such that M'(p) > M"(p).

2.5. Go to 2. 53



Coverability tree

Theorem (boundedness) : 

A Petri net (N, M0) is bounded iff the symbol wdoes not appear in the 

coverability tree.

Theorem (bounded PN) : 

For a bounded Petri net, it is deadlock-free iff any node of the 

reachability tree has a successor. It is reversible iff the reachability tree is

strongly connected. A transition t is live iff it appears a all strongly

connected components that do not have arcs going out.

Remark: 

Liveness and reversibility of unbounded PN cannot be checked with

coverability trees.
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Siphons and traps

A siphon is a subset of places such that any input transition of a place is 

an output transition of some other place. 

A trap is a subset of places such that any output transition of a place is an 

output transition of some other place.

55

Siphon

ifthen

Trap

then
if



Siphons and traps

Theorem: For any ordinary PN,

• A siphon free of tokens at a marking remains token-free

• A trap marked by a marking remains marked

• The empty places of a dead marking form a siphon for any marking 

such that no transition is enabled.

• A Petri net is deadlock-free if no siphon eventually becomes empty.
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Siphons and traps

Theorem: A connected event graph (N, M0) is live iff every circuit contains a 

token. A live event graph is reversible. A connex event graph is bounded iff it is

strongly connected.

Theorem: A connected state machine is always bounded. It is live and reversible

iff it is strongly connected. 

Theorem : A free-choice (extended or not) (N, M0) is live iff all siphon contains

a trap marked at M0. 

Theorem : An assymetric net (N, M0) is live iff no siphon can become unmarked.

Remarks:

• Whether all siphons remain marked can be checked by integer programming.

• For usual manufacturing systems, both liveness and reversibility are ensured if 

no siphon can become unmarked
57



Siphons and traps

Theorem: A Petri net (N, M0) is deadlock-free if  G = 0 where

G = max  ∑pŒP up

such that

- S is a siphon, i.e.

zt ≤ ∑p�•t up, t Œ T

up ≤ zt,  t, p / t � •p

up , zt Œ  {0, 1}

- S can become unmarked:

1{M(p)} + up ≤ 1 , p Œ P (NL)

M = M0 + CY 

M ≥ 0, Y ≥ 0.

The nonlinear constraint (NL) can be replaced by

(NL)   <=>   M(p) / SB(p) + up ≤ 1

where SB(p) is the upper bound of the marking of place p.

 

S 

If then 

u p  = 0 

z t  = 1 

u p  = 1 

z t  = 0 



Siphons and traps

Live as it is an AC net and 

any siphon contain a trap

marked at M0
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• The AC net is life iff n1 < n2+n3.



p-invariants

Definition: 

• A integer vector X≥0 of dimension n = |P| is a p-invariant if  Xt C = 0.

• The set of places pi with Xi > 0 is called the support of the p-invariant 

and is denoted ||X||.

• A p-invariant X is said minimal if there does not exist another p-invariant 

X’ such that X' ≠ X and X' ≤ X.

Exampel:
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p-invariants

Theorem: X is a p-invariant iff, for all M0, Xt M = Xt M0,  M Œ R(M0).

Theorem : Any linear combination of p-invariants is a p-invariant.

Theorem : All p-invariant is a non negative linear combination of minimal p-

invariants.

Remark : For PN models of real systems, a minimal p-invariant has clear

physical significance (resource, production control strategies, ...) and can be

derived by inspection of resources and processes.

Exampe:
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t-invariants

Definition: 

• A integer vector Y≥0 of dimension m = |T| is a t-invariant if  CY = 0.

• The set of transitions ti with Yi > 0 is called the support of the t-invariant 

and is denoted ||Y||.

• A t-invariant Y is said minimal if there does not exist another t-invariant 

Y’ such that Y' ≠ Y and Y' ≤ Y.

Exampel:
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t-invariants

Theorem: Let s be a sequence of transitions tranforming M0 into M and Y its

counting vector. Then M = M0 iffY is an t-invariant.

Theorem : Any linear combination of t-invariants is a t-invariant.

Theorem : All t-invariant is a non negative linear combination of minimal t-

invariants.

Remark : In general, a minimal t-invariant corresponds to a process that can

be repeat for ever. They can be identified by neglecting resources. 

Exampe:
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Structural properties

STRUCTURAL BOUNDEDNESS

A Petri net N is structurally bounded if it is bounded starting from any M0.

Criterion : N is structurally bounded   X > 0, XTC ≤ 0.

Theorem: (N, M0) is bounded if it is structurally bounded.

CONSERVATIVENESS

A Petri net N is conservative if there exists a vector X > 0 associated with 

places such that XTM = XTM0, M0, M R(M0).

Criterion : N is conservative   X > 0, XTC = 0.

Theorem: 

• (N, M0) is bounded if it is conservative.

• A Petri net is conservative if all places are covered by some p-invariant.
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Structural properties

REPETITIVENESS

A Petri net N is repetitive if there exists M0 and a feasible firing sequence 

such that each transition appears infinitely often. 

Criterion : N is repetitive   Y > 0, CY ≥ 0.

Theorem: A live Petri net (N, M0) is repetitive.

CONSISTENCY

A Petri net N is consistent if there exist an initial marking M0 and a firing 

sequence s such that > 0 and M0 [s >M0.

Criterion : N is consistent   Y > 0, CY = 0.

Theorem : 

• A live Petri net (N, M0) with a home state is consistent.

• A live and bounded Petri net (N, M0) is consistent. It is also conservative 

if it is live and structurally bounded.
65



Structural properties
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 S1 S2 
R1 

R2 R3 

In practice, boundedness reduces to 

conservativeness.

Consistency and conservativeness 

provide necessary conditions for 

liveness and resersibility.

Unfortunately, liveness and 

resersibility remain difficult to 

check. 



Determination of p- and t-invariants
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Algorithm of minimal p-invariants
1. Set A = In×n with n = |P| and B = C (incidence matrix). 

Construct matrix [A | B].

2. For each transition tj:

2.1. Add to [A | B] non negative linear combination of 

any two lines that zeros the entry of column tj

2.2. Remove in the matrix [A | B] all lines i such that 

the entry (i, j) is not zero.

3. p-invariants correspond to lines of matrix A.

The algorithm of t-invariants is similar with C 

replaced by CT.

 

2 

3 

2 
2 



Topics not addressed in Chapters 2-3
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Supervisory control with automata theory

Timed Petri nets

Color Petri nets

Petri net controls

Petri net models synthesis


