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Course L3 

 Signal theory 
 

 

The Hilbert transform and analytic signals 
 

 

 

Definition 
 

If ( )s t is real, the Hilbert’s transform of ( )s t  is : 

 
1 1 ( )

( ) ( ) ( )i
u t

s u
H s t t VP s u VP du

u t u


 



 

 
      

  

Which converges for almost all t  for  1ps L p   

This integral is considered in a Cauchian sense and the computation has to be done in the 

complex plane with the residual method. 

 

Relation in the frequency domain 
 

If we call :  ŝ  the Fourier transform of ( )s t and  ̂  the Fourier transform of ( )t , then :   

we know that :              if 
 

 

ˆ( )

ˆ ( )

s t s

s t s







 
 then if  

1
sgn( )t

j
F  then 

1
sgn( )j

t




 
  

 
F  

                                                                              (The sgn(.) function is odd ) 

 

We get :       ˆ ˆ( ) sgn( ).iH s t j s     F  

1-That’s mean that we get ( )t  from ( )s t  by a phase delay of / 2 . 

 

( )s t ( )t  

 

 

2- In the particular case of narrow band signal, around 0 , a phase delay of  / 2  means, to 

delay of a quarter of HF period. This delay can be done on the sampled signal. Also, we know 

that , for a narrow band signal  0B in , a sample in HF is equivalent to two samples as 

shown in the graph. 

The samples in continuous line correspond to s(t) and the samples in dot fed line, to ( )t . The 

knowledge of the 2 series or samples is equivalent to the analytic signal, as we will see later. 

    

      / 2  
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0

1
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3-Examples 

 

If  0( ) coss t t      then 0( ) sint t   

If  0( ) sins t t       then 0( ) cost t    

A few properties : 

 

a) ( ) ( )s t t  because ( ), ( ) 0s t t   ( by Parseval’s theorem ) 

b)    ( ) ( ) ( ) ( )i it H s t then s t H t     

c)   ( )s t and ( )t  have the same norm in 2
2 2

( ) ( )L s t t  

d) … 

 

Analytic signal  
 

By definition, the analytic signal associated to ( )s t  is 

( ) ( ) ( )t s t j t    

Then of course : 

     ˆ ˆ2H s       with   H  Heaviside distribution 

Thus, ( )t is a signal with positive frequency components. 

The hermician property of the Fourier transform is not conserved that means that it can’t be a 

real signal. 

 

Hilbert transform of ( )t  

We want to compute the Hilbert transform of  ( )t . 

( ) ( ) ( )i i
H H

s t t t    

We have 
1 1 1

( ) ( ) ( )t t s t
t t t

 
  

      

We can prove that  

0
1 1

t
t t


 

     

Then : 

 ( ) ( )i iH H s t s t      

Remark : 
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             ˆ ˆ ˆ ˆsgn sgn sgn .t i i i s s                 F  

 

Bedrosian’s theorem  
 

If  2 functions  ( )f t  and 2( )g t L  with the Fourier transform  f̂   and  ĝ  respectively with 

: 

 

 

 

ˆ 0

ˆ 0

f for B

g for B

 

 

 

 
 

Then : 

   . .i iH f g f H g  

 

Ceschi’s theorem 
 

If we consider 2 functions ( )f t  and ( )t  with : 

1- ( )t is a complex rational function which can be put under the form : 

1
p

with d q d p
q

     

q has only strictly negative imaginary part roots 

2-  ( )f t  is a real rational function with the the positive or null imaginary part of the complex 

poles are equal to the zeros of  ( )t . 

Then ( )t  represents an analytic signal. 

If writing f   under the form: 

1
1 1

1

1
p

we have d q d p
q

     

Then f  represents also an analytic signal and noting g the real part of  ( )t  

   . .i iH f g f H g  

NB : we didn’t use the hypothese of the Bedrosian theorem. 

 

Causality  
 

Writing that the transfer function of a stable system is the Fourier transform of a causal signal, 

i.e. of the impulse response ( )h t  equal to zero if 0t  , we can write : 

 

( ) ( ) ( )h t H t h t    H(t) : Heaviside distribution 

 

In the frequency domaine, we can write : 

 

     0
1 1ˆ ˆ ˆ
2

ih h jH h
j

   




 
        

 
 

Writing now  ĥ   with its real and imaginary parts 
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     

   

   

   

ˆ

i i

i

i

h a jb

jH a H b

then a H b

and b H a Kramers Kröenig relations

  

 

 

 

 

        

   

    

 

Which means that the real and imaginary parts of the transfer function of a causal system are 

not independant. They are linked by the Hilbert’s transform. If we know one of them, we 

know the other ! 

Example 1. 

If G P jQ   
2

1

1
G P jQ with P 


  


, we can determine Q and G. 

We can write :  
   2

1 ( ) 1 1

1

P u du
Q VP du VP

u uu


   

 

 

  
 

   

And using the residual theorem we get : 

 
2 2 2

1 1

11 1 1

j
Q and G

j

 


  

 
   

  
 

Example 2. 

The impedance of a capacity constitutes a transfer function     
j

G Z
C

 



  . If we consider 

that the capacity is stable, the real part of  Z   can’t be equal to zero, because    
1

0 0iH
C


     

. We want to determine this real part. Applying the last relation   ia H b  we get with 
1

B
C


    

; 

0
1 1 1 1

a
C C C


 


   


   

     
 

 

Thus, it is more correct to write :  

  0
j

Z
C C




 


   

The impedance is infinite in  0   and complex 

 

Another relationship between a and b. 
 

As  ĥ   is hermitian,  a   is an even function and  b  an odd function. Let us explore the 

impulse response. 

      

   

2 2

0 0

ˆ( )

2 cos 2 . 2 sin 2 .

j t j th t h e d a jb e d

a t d b t d

     

     

 

 

 

  

 

 

 

 

Like ( ) 0 0h t if t   

We get :  

 

   
0 0

cos 2 . sin 2 . 0a t d b t d if t     
 

    

Changing t by –t, 

   
0 0

cos 2 . sin 2 . 0a t d b t d if t     
 

     
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Thus we find the result : 

   
0 0

( ) 4 cos 2 . 4 sin 2 .h t a t d b t d     
 

     

 

Relation between gain and phase 
When a transfer function  ĥ   has no pole in the right plane or on the Im ( ) axis and no zero 

in the right plane and Im  ( ) axis too, then   ˆln h   is a function without singularity in the 

right plane and we can show that :  

     ˆ ˆ ˆln ln .argh h j h     

has the same properties, that means that the gain and phase are not independant. The Hilbert 

relationship links them by : 

 

 
 

 
 

ˆarg1ˆln

ˆln1ˆarg

h u
h VP du

u

h u
h VP du

u


 


 





















 

 

It is the case of the transfer function of minimum-phase, 

 

Module and argument of the analytic function of s(t) 
 

We have : 
s j    

And       2 2s    

Writing    ' ' '

' '

s
ss

s s


 

 

 
  

  

 

Thus, the module of ( )t is always greater or equal to s(t) and has the same tan at the contact 

points. It is why, ( )t  is called the complex envelope of s(t) ( or of ( )t  ). 

 

Narrow band signal and analytic signal with carrier 0  

 

If s(t) is a narrow band signal, we can write : 

 0( ) ( )cos ( )s t e t t t    

With  ( )e t  and ( )t  having slow variations in front of 
0

2


. Let us seek ( )t  the Hilbert 

transform of ( )s t . In the frequency space, we get  ̂   by       ˆ ˆ( ) sgn( ).iH s t j s     F  

That means a phase delay of 
2


for every frequency. But  ŝ  is a narrow band signal, this is 

equivalent to a delay of a quarter of period HF of  ŝ  equal to 
0

1 2
.

4




; then : 

   

 

0

0

( ) ( )cos

( )cos
2

t e t t t

e t t t

     


   

     

  
      

  

 

But ( ) ( ) ( ) ( )e t e t and t t      because we are with slow variations . 
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Thus  

 0( ) ( )sin ( )t e t t t    

And : 

   0 0( ) ( ) . ( ) ( )exp ( ) ( )exp ( ) exp

complex envelope

t s t j t e t j t t e t j t j t          

 

Complex stochastic process 
 

If s(t) is a complex stochastic process, so, ( )t is also a complex stochastic process. That 

means that s(t) and ( )t have the same spectral density power. 

Let us compute the cross correlation function ( )sB  . 

    
1 ( ) 1 ( ) ( )

( ) . ( )

( ) ( )1 1

( )

s

ss ss

s u s u s t
B E t s t E VP du s t E VP du

t u t u

B u t B v
VP du VP dv

u t v

   
   

   

 

 

 

 

      
      

         


 

  

 

 

 

Thus the cross correlation function of ( )t and s(t) is the Hilbert’s transform of the correlation 

function of s(t).Also we can see that at the same time s(t) and ( )t are uncorrelated variables. 

 

   
( ) ( )1 1

0 0ss ss
s s

B v B v
B VP dv and B VP dv

v v
 

  

 

 

  
 

   

Because ( )ssB v is even ! 

 

Application of the analytic signal to the SSB modulation. 
 

We want to write the modulated signal in the SSB case by using the analytic signal. 

We call 0  the carrier, ( )x t the modulating signal and ( )t the analytic signal associated to 

( )x t . 

Four steps. 

1-We build the analytic signal associated to ( )x t . 

1
( ) ( ) ( )t x t j x t

t




 
   

 
 

                           Spectrum of  ( )x t                                                 Spectrum of 
1

ˆ( ) ( )
2

t x   

 
                                      0                                                                             0 
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2-We translate the ˆ ( )x  spectrum by 0 ( equivalent operation by multiplying 0
2j t

e
 ) 

We get   0
21

( )
2

j t
t e

 . 

3-Do the same operation for the left side of the spectrum. 

  
1

ˆ ˆ ˆ( ) ( ) ( ) ( ) sgn ( ) 2 ( ) ( )t x t j x t x j j x x H
t

     


 
        

 

F  

 

Spectrum of 
1

ˆ( ) ( )
2

t x                                                                   Spectrum of 0
21

( )
2

j t
t e

   

 
                                      0                                                                           - 0                  0 

 

4-By adding the 2 spectrum we get ( )e t  the emitted signal 

0 0
2 21 1

( ) ( ) ( )
2 2

j t j t
e t t e t e

   
   

But we remark that ( ) ( )t and t   are conjugated. Thus the emitted signal becomes : 

0
2

( ) ( )
j t

e t t e
 

 
Re  

Example : 

If 

 
( ) cos 2

( ) cos 2 . sin 2 .exp2

x t k t

t k t j k t k t



   



  
 

The emitted ( )e t  SSB is : 

 
 00 0

22 22( ) ( ) .
j tj t j tj te t t e ke e ke
   

      
      

Re Re Re  

Thus : 

 0( ) cos2e t k t     

 

Exercise: 

 

We recall that ( )t is the Hilbert transform of ( )s t  with the definition ! 

 

 
1 1 ( )

( ) VP VP
s x

t s t dx
t t x


 





  
  

Give the Hilbert transform of : 

 

a)    ;s t a a        b) 
 2

2

d s t

dt

            c) ( )s t           d) ( )s at in fonction of    . 


